Zobrazeno 1 - 10
of 31
pro vyhledávání: '"M. Raddi"'
Publikováno v:
Frontiers in Molecular Biosciences, Vol 8 (2021)
Bayesian Inference of Conformational Populations (BICePs) is an algorithm developed to reconcile simulated ensembles with sparse experimental measurements. The Bayesian framework of BICePs enables population reweighting as a post-simulation processin
Externí odkaz:
https://doaj.org/article/9148c7ca6b6840dc9da086267d7716b2
Autor:
C. Cardone, A. De Stefano, G. Rosati, A. Cassata, L. Silvestro, M. Borrelli, E. Di Gennaro, C. Romano, A. Nappi, N. Zanaletti, F. Foschini, R. Casaretti, F. Tatangelo, S. Lastoria, M. Raddi, D. Bilancia, V. Granata, S. Setola, A. Petrillo, C. Vitagliano, P. Gargiulo, L. Arenare, A. Febbraro, E. Martinelli, F. Ciardiello, P. Delrio, A. Budillon, M.C. Piccirillo, A. Avallone
Background: Maintaining angiogenesis inhibition and switching the chemotherapy backbone represent the current second-line therapy in patients with RAS-mutant metastatic colorectal cancer (mCRC). Regorafenib, an oral multikinase inhibitor, prolonged o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d4de1274e1101a4f09f6c89979c165bf
https://hdl.handle.net/11591/486125
https://hdl.handle.net/11591/486125
Publikováno v:
J Chem Inf Model
Bayesian Inference of Conformational Populations (BICePs) version 2.0 (v2.0) is a free, open-source Python package that reweights theoretical predictions of conformational state populations using sparse and/or noisy experimental measurements. In this
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e593bf68ded9e81dbf71eda9550efb59
https://doi.org/10.26434/chemrxiv-2022-1b24c
https://doi.org/10.26434/chemrxiv-2022-1b24c
Autor:
Vincent A. Voelz, Robert M. Raddi
Publikováno v:
Journal of Computer-Aided Molecular Design. 35:953-961
Accurate predictions of acid dissociation constants are essential to rational molecular design in the pharmaceutical industry and elsewhere. There has been much interest in developing new machine learning methods that can produce fast and accurate pK
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
C. Cardone, M. Piccirillo, G. Rosati, A. De Stefano, C. Romano, A. Nappi, N. Zanaletti, F. Foschini, A. Cassata, R. Casaretti, L. Silvestro, F. Tatangelo, S. Lastoria, M. Raddi, D. Bilancia, A. Febbraro, E. Martinelli, F. Ciardiello, P. Delrio, F. Perrone, A. Budillon, A. Avallone
Publikováno v:
Annals of Oncology. 33:S271
Publikováno v:
Frontiers in Molecular Biosciences
Frontiers in Molecular Biosciences, Vol 8 (2021)
Frontiers in Molecular Biosciences, Vol 8 (2021)
Bayesian Inference of Conformational Populations (BICePs) is an algorithm developed to reconcile simulated ensembles with sparse experimental measurements. The Bayesian framework of BICePs enables population reweighting as a post-simulation processin
Autor:
Robert M, Raddi, Vincent A, Voelz
Publikováno v:
J Comput Aided Mol Des
Accurate predictions of acid dissociation constants are essential to rational molecular design in the pharmaceutical industry and elsewhere. There has been much interest in developing new machine learning methods that can produce fast and accurate pK
Publikováno v:
Biophysical Journal. 118:139a-140a
Autor:
C Nappi, W Acampa, V Gaudieri, Z Zampella, R Assante, P Buongiorno, T Mannarino, M Raddi, A Genova, A D\\'antonio, P Arumugam, A Cuocolo
Publikováno v:
European Heart Journal - Cardiovascular Imaging. 20