Zobrazeno 1 - 10
of 26
pro vyhledávání: '"M. R. Vedadi"'
Autor:
A. Karami Z., M. R. Vedadi
Publikováno v:
Communications in Algebra. 51:168-177
Autor:
M. R. Vedadi, Najma Ghaedan
Publikováno v:
Sibirskie Elektronnye Matematicheskie Izvestiya. 18:782-791
Since 2004, Baer modules have been considered by many authors as a generalization of the Baer rings. A module $M_R$ is called Baer if every intersection of the kernels of endomorphisms on $M_R$ is a direct summand of $M_R$. It is known that commutati
Publikováno v:
Communications in Algebra. 48:2872-2882
Modules in which every submodule is isomorphic to a direct summand is called virtually semisimple. In this article, we carry out a study of virtually semisimple modules over a commutative ring R. A...
Autor:
Y. Tolooei, M. R. Vedadi
Publikováno v:
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publicacions Matemàtiques; Vol. 57, Núm. 1 (2013); p. 107-122
Publ. Mat. 57, no. 1 (2013), 107-122
Recercat. Dipósit de la Recerca de Catalunya
instname
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publicacions Matemàtiques; Vol. 57, Núm. 1 (2013); p. 107-122
Publ. Mat. 57, no. 1 (2013), 107-122
Recercat. Dipósit de la Recerca de Catalunya
instname
We carry out a study of rings $R$ for which $\operatorname{Hom}_R(M,N)\neq 0$ for all nonzero $ N\leq M_R$. Such rings are called retractable. For a retractable ring, Artinian condition and having Krull dimension are equivalent. Furthermore, a right
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0f587f658b98cd7dfe9edf850a26e877
http://hdl.handle.net/2072/398171
http://hdl.handle.net/2072/398171
Autor:
A. Karami Z., M. R. Vedadi
Publikováno v:
Mediterranean Journal of Mathematics. 18
Generalizing Artinian rings, a ring R is said to have right restricted minimum condition ( $${\mathrm{r.RMC}}$$ , for short) if R/A is an Artinian right R-module for any essential right ideal A of R. It is asked in Jain et al. [Cyclic Modules and the
Autor:
N. Dehghani, M. R. Vedadi
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9789811554544
This is a brief survey on a module generalization of the concepts of prime (semiprime) for a ring. An R-module M is called weakly compressible if Hom\(_R(M,N)N\) is nonzero for every \(0\ne N \le M_R\). They are semiprime (i.e., \(M\in \) Cog(N) for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5a2745c95444e09525bea95e6351e350
https://doi.org/10.1007/978-981-15-5455-1_13
https://doi.org/10.1007/978-981-15-5455-1_13
Publikováno v:
Algebras and Representation Theory. 21:1333-1342
We say that an R-module M is virtually semisimple if each submodule of M is isomorphic to a direct summand of M. A nonzero indecomposable virtually semisimple module is then called a virtually simple module. We carry out a study of virtually semisimp
Publikováno v:
Communications in Algebra. 46:2384-2395
By any measure, semisimple modules form one of the most important classes of modules and play a distinguished role in the module theory and its applications. One of the most fundamental results in this area is the Wedderburn-Artin theorem. In this pa
Autor:
M. R. Vedadi, N. Dehghani
Publikováno v:
Communications in Algebra. 44:4732-4748
For certain classes 𝒞 of R-modules, including singular modules or modules with locally Krull dimensions, it is investigated when every module in 𝒞 with a finitely generated essential submodule is finitely generated. In case 𝒞 = Mod-R, this m
Publikováno v:
Mediterranean Journal of Mathematics. 10:1171-1187
By defining orthogonal decomposition for modules, we prove that an R-module M has only finitely many fully invariant direct summands if and only if EndR(M) has triangulating dimension \({n = {\rm Sup}\{k \in \mathbb{N} | M = \oplus^{k}_{i=1}M_{i}}\)