Zobrazeno 1 - 10
of 60
pro vyhledávání: '"M. M. Zarichnyi"'
Autor:
M. M. Zarichnyi
Publikováno v:
Bukovinian Mathematical Journal. 9:171-179
Idempotent mathematics is a branch of mathematics in which idempotent operations (for example, max) on the set of reals play a central role. In recent decades, we have seen intensive research in this direction. The principle of correspondence (this i
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 4, Iss 1, Pp 4-11 (2013)
We prove that a monomorphic functor $F:\mathbf{Comp}\to\mathbf{Comp}$ with finite supports isepimorphic, continuous, and its maximal $\emptyset$-modification $F^\circ$ preserves intersections. This implies that a monomorphic functor $F:\mathbf{Comp}\
Externí odkaz:
https://doaj.org/article/ef32814c251c4eaaac55e659897e0360
Autor:
K. M. Koporkh, M. M. Zarichnyi
Publikováno v:
Matematychni Metody Ta Fizyko-Mekhanichni Polya. 64
Autor:
M. M. Zarichnyi, S. O. Ivanov
Publikováno v:
Ukrainian Mathematical Journal. 53:809-813
We prove that the hyperspace of compact convex subsets of the Tikhonov cube \(I^{\omega_1}\) is homeomorphic to \(I^{\omega_1}\).
Autor:
M M Zarichnyi
Publikováno v:
Sbornik: Mathematics. 188:435-447
Absorbing sets are constructed in the sense of Bestvina and Mogilski for n-dimensional separable metric spaces in absolute Borel and projective classes.
Autor:
M. M. Zarichnyi
Publikováno v:
Mathematical Notes. 60:638-641
LetC be one of the absolute Borel classesM α ,A α , with 1≤α
Autor:
M M Zarichnyi
Publikováno v:
Mathematics of the USSR-Sbornik. 74:9-27
An investigation is made of the geometry of the multiplication mappings for monads whose functorial parts are (weakly) normal (in the sense of Shchepin) functors acting in the category of compacta. A characterization is obtained for a power monad as
Autor:
M. M. Zarichnyi
Publikováno v:
Mathematical Notes. 52:1107-1111
Autor:
M. M. Zarichnyi
Publikováno v:
Ukrainian Mathematical Journal. 42:1131-1134
The main results of the paper is a characterization theorem for protective monads in Vinarek's sense on the category of compact spaces. The proof makes use of a description of a power functor in terms of multiplicativity-like properties.
Autor:
M. M. Zarichnyi
Publikováno v:
Mathematical Notes of the Academy of Sciences of the USSR. 41:58-61