Zobrazeno 1 - 10
of 141
pro vyhledávání: '"M. Jotz"'
Autor:
Lean, M. Jotz
This paper shows the equivalence of the categories of $N$-manifolds of degree $2$ with the category of double vector bundles endowed with a linear metric. Split Poisson $N$-manifolds of degree $2$ are shown to be equivalent to self-dual representatio
Externí odkaz:
http://arxiv.org/abs/1504.00880
Autor:
Lean, M. Jotz
We define Dorfman connections, which are to Courant algebroids what connections are to Lie algebroids. Several examples illustrate this analogy. A linear connection $\nabla\colon \mathfrak{X}(M)\times\Gamma(E)\to\Gamma(E)$ on a vector bundle $E$ over
Externí odkaz:
http://arxiv.org/abs/1209.6077
Publikováno v:
Journal of Homotopy and Related Structures. 18:23-70
This paper studies differential graded modules and representations up to homotopy of Lie n-algebroids, for general $$n\in {\mathbb {N}}$$ n ∈ N . The adjoint and coadjoint modules are described, and the corresponding split versions of the adjoint a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
M. Jotz Lean
Publikováno v:
Journal of Symplectic Geometry. 17:179-238
Autor:
M. Jotz Lean
Publikováno v:
Mathematical Physics, Analysis and Geometry. 23
This paper reformulates Li-Bland’s definition for LA-Courant algebroids, or Poisson Lie 2-algebroids, in terms of split Lie 2-algebroids and self-dual 2-representations. This definition generalises in a precise sense the characterisation of (decomp
Autor:
M. Jotz Lean
Publikováno v:
Journal of Geometry and Physics. 133:113-140
This paper describes an equivalence of the canonical category of N -manifolds of degree 2 with a category of involutive double vector bundles. More precisely, we show how involutive double vector bundles are in duality with double vector bundles endo
Autor:
M. Jotz Lean
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 116:1-39
We define Dorfman connections, which are to Courant algebroids what connections are to Lie algebroids. We illustrate this analogy with examples. In particular, we study horizontal spaces in the standard Courant algebroids over vector bundles: A linea
Publikováno v:
Journal of Homotopy and Related Structures. 13:287-319
We show that double Lie algebroids, together with a chosen linear splitting, are equivalent to pairs of 2-term representations up to homotopy satisfying compatibility conditions which extend the notion of matched pair of Lie algebroids. We discuss in
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.