Zobrazeno 1 - 10
of 104
pro vyhledávání: '"M. Hernández-Jiménez"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Advanced Information Networking and Applications ISBN: 9783030440404
AINA
AINA
This paper is focused on multimodal approaches to malware detection, which have not been explored widely in related works. We use static code-based features and dynamic power-based, network traffic-based, and system log-based features, and propose mu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e7806844a04b3aba783eb33cfd228b31
https://doi.org/10.1007/978-3-030-44041-1_117
https://doi.org/10.1007/978-3-030-44041-1_117
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
ICDIS
Even though malware detection is an active area of research, not many works have used features extracted from physical properties, such as power consumption. This paper is focused on malware detection using power consumption and network traffic data