Zobrazeno 1 - 10
of 17
pro vyhledávání: '"M. Germin Nisha"'
Publikováno v:
Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol 70, Iss 1 (2022)
Industrial processes such as batch distillation columns, supply chain, level control etc. integrate dead times in the wake of the transportation times associated with energy, mass and information. The dead time, the cause for the rise in loop variabi
Externí odkaz:
https://doaj.org/article/b214551c46ca4fb49c60d5307009512f
Autor:
P. M., Ansho, M., Germin Nisha
Publikováno v:
Journal of Electrical Engineering & Technology (19750102); May2024, Vol. 19 Issue 4, p2047-2057, 11p
Publikováno v:
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 31:327-349
Process control is the interested domain of interest as the industrial high-order applications require an effective control mechanism with higher robustness. Since the conventional method of proportional integral derivative (PID) controller remains i
Publikováno v:
Intelligent Automation & Soft Computing. 36:745-760
Autor:
M. Nisha, M. Germin Nisha
Publikováno v:
Intelligent Automation & Soft Computing. 34:1399-1413
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC).
An effective application of Model Predictive Control by means of a multi-layer feed forward neural network as the nonlinear model of the process is discussed. The main draw back in the use of Nonlinear programming for optimization is the complexity i
Autor:
M. Germin Nisha, D. Periyasamy
Publikováno v:
2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT).
Model predictive control (MPC), which works on the basis of receding horizon control has attracted the process control community due to its capability to grasp constraints on process variables, nonlinearities plus interactions among process variables
Publikováno v:
International Journal of Sustainable Energy. 34:685-692
This paper proposes an advanced machine learning method, relevance vector machines (RVMs), to model photovoltaic (PV) cells with a few measured data, over a range of expected operating conditions. RVMs are established on a Bayesian formulation which