Zobrazeno 1 - 10
of 235
pro vyhledávání: '"M. Bink"'
Autor:
Martijn F. L. Derks, Hendrik-Jan Megens, Mirte Bosse, Jeroen Visscher, Katrijn Peeters, Marco C. A. M. Bink, Addie Vereijken, Christian Gross, Dick de Ridder, Marcel J. T. Reinders, Martien A. M. Groenen
Publikováno v:
Genetics Selection Evolution, Vol 50, Iss 1, Pp 1-14 (2018)
Abstract Background Deleterious genetic variation can increase in frequency as a result of mutations, genetic drift, and genetic hitchhiking. Although individual effects are often small, the cumulative effect of deleterious genetic variation can impa
Externí odkaz:
https://doaj.org/article/70b4db8f2abf4b63bd0cba9411202faa
In humans and livestock species, genome-wide association studies (GWAS) have been applied to study the association between variants distributed across the genome and a phenotype of interest. To discover genetic polymorphisms affecting the duodenum, l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2659::c284f9fd8273c6d9bf486d1c48732139
https://zenodo.org/record/8081207
https://zenodo.org/record/8081207
Autor:
Marzieh Heidaritabar, Marco C. A. M. Bink, Elda Dervishi, Patrick Charagu, Abe Huisman, Graham S. Plastow
Publikováno v:
Journal of Animal Breeding and Genetics.
Autor:
Marzieh Heidaritabar, Abe Huisman, Kirill Krivushin, Paul Stothard, Elda Dervishi, Patrick Charagu, Marco C. A. M. Bink, Graham S. Plastow
Publikováno v:
Frontiers in Genetics. 13
Imputed whole-genome sequence (WGS) has been proposed to improve genome-wide association studies (GWAS), since all causative mutations responsible for phenotypic variation are expected to be present in the data. This approach was applied on a large n
Publikováno v:
G3 (Bethesda, Md.) 12 (2022) 11
G3 (Bethesda, Md.), 12(11)
G3 (Bethesda, Md.), 12(11)
Recent developments allowed generating multiple high-quality ‘omics’ data that could increase the predictive performance of genomic prediction for phenotypes and genetic merit in animals and plants. Here, we have assessed the performance of param
Autor:
Marjolein Luman, Tieme W. P. Janssen, Rosa van Mourik, Jaap Oosterlaan, Athanasios Maras, M. Bink
Publikováno v:
Journal of Attention Disorders
Luman, M, Janssen, T, Bink, M, van Mourik, R, Maras, A & Oosterlaan, J 2021, ' Probabilistic Learning in Children With Attention-Deficit/Hyperactivity Disorder ', Journal of Attention Disorders, vol. 25, no. 10, pp. 1407-1416 . https://doi.org/10.1177/1087054720905094
Journal of Attention Disorders, 25(10), 1407-1416. SAGE Publications Inc.
Journal of attention disorders. SAGE Publications Inc.
Luman, M, Janssen, T, Bink, M, van Mourik, R, Maras, A & Oosterlaan, J 2021, ' Probabilistic Learning in Children With Attention-Deficit/Hyperactivity Disorder ', Journal of Attention Disorders, vol. 25, no. 10, pp. 1407-1416 . https://doi.org/10.1177/1087054720905094
Journal of Attention Disorders, 25(10), 1407-1416. SAGE Publications Inc.
Journal of attention disorders. SAGE Publications Inc.
Objective: The current study examined instrumental learning in ADHD. Method: A total of 58 children with ADHD and 58 typically developing (TD) children performed a probabilistic learning task using three reward probability conditions (100%, 85%, 70%
We compared the performance of linear (GBLUP, BayesB, and elastic net) methods to a nonparametric tree-based ensemble (gradient boosting machine) method for genomic prediction of complex traits in mice. The dataset used contained genotypes for 50,112
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2659::37c26d99d5f2ec0bad6889587ad8ed39
https://zenodo.org/record/7957921
https://zenodo.org/record/7957921
Publikováno v:
G3 (Bethesda, Md.) 12 (2022) 4
G3 (Bethesda, Md.), 12(4)
G3 (Bethesda, Md.), 12(4)
Recent literature suggests machine learning methods can capture interactions between loci and therefore could outperform linear models when predicting traits with relevant epistatic effects. However, investigating this empirically requires data with
Autor:
Yvette de Haas, Marco C. A. M. Bink, Erwin P. C. Koenen, Lisanne M. G. Verschuren, Herman Mollenhorst
Publikováno v:
Reducing greenhouse gas emissions from livestock production ISBN: 9781003048213
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f80c7cbe4538d9c151f295c33963d37d
https://doi.org/10.1201/9781003048213-3
https://doi.org/10.1201/9781003048213-3
Autor:
Laura Rossini, Pere Arús, Thierry Pascal, Ignazio Verde, Sabrina Micali, Igor Pacheco, P. Lambert, Marco C. A. M. Bink, Alessandra Stella, Cassia da Silva Linge, Filippo Biscarini, Bénédicte Quilot-Turion, Daniele Bassi, Nelson Nazzicari, Maria José Aranzana
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
BMC Genomics 1 (18), . (2017)
BMC Genomics
BMC Genomics, BioMed Central, 2017, 18 (1), ⟨10.1186/s12864-017-3781-8⟩
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
BMC genomics 18 (2017): 1–15. doi:10.1186/s12864-017-3781-8
info:cnr-pdr/source/autori:Filippo Biscarini, Nelson Nazzicari1, Marco Bink, Pere Arús, Maria José Aranzana, Ignazio Verde, Sabrina Micali, Thierry Pascal, Benedicte Quilot-Turion6, Patrick Lambert, Cassia da Silva Linge, Igor Pacheco, Daniele Bassi, Alessandra Stella and Laura Rossini/titolo:Genome-enabled predictions for fruit weight and quality from repeated records in European peach progenies/doi:10.1186%2Fs12864-017-3781-8/rivista:BMC genomics/anno:2017/pagina_da:1/pagina_a:15/intervallo_pagine:1–15/volume:18
Digital.CSIC: Repositorio Institucional del CSIC
Consejo Superior de Investigaciones Científicas (CSIC)
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
BMC Genomics 18 (2017) 1
BMC Genomics, 18(1)
BMC Genomics, Vol 18, Iss 1, Pp 1-15 (2017)
Digital.CSIC. Repositorio Institucional del CSIC
BMC Genomics, 2017, 18 (1), ⟨10.1186/s12864-017-3781-8⟩
IRTA Pubpro. Open Digital Archive
Institut de Recerca i Tecnologia Agroalimentàries (IRTA)
instname
BMC Genomics 1 (18), . (2017)
BMC Genomics
BMC Genomics, BioMed Central, 2017, 18 (1), ⟨10.1186/s12864-017-3781-8⟩
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
BMC genomics 18 (2017): 1–15. doi:10.1186/s12864-017-3781-8
info:cnr-pdr/source/autori:Filippo Biscarini, Nelson Nazzicari1, Marco Bink, Pere Arús, Maria José Aranzana, Ignazio Verde, Sabrina Micali, Thierry Pascal, Benedicte Quilot-Turion6, Patrick Lambert, Cassia da Silva Linge, Igor Pacheco, Daniele Bassi, Alessandra Stella and Laura Rossini/titolo:Genome-enabled predictions for fruit weight and quality from repeated records in European peach progenies/doi:10.1186%2Fs12864-017-3781-8/rivista:BMC genomics/anno:2017/pagina_da:1/pagina_a:15/intervallo_pagine:1–15/volume:18
Digital.CSIC: Repositorio Institucional del CSIC
Consejo Superior de Investigaciones Científicas (CSIC)
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
BMC Genomics 18 (2017) 1
BMC Genomics, 18(1)
BMC Genomics, Vol 18, Iss 1, Pp 1-15 (2017)
Digital.CSIC. Repositorio Institucional del CSIC
BMC Genomics, 2017, 18 (1), ⟨10.1186/s12864-017-3781-8⟩
IRTA Pubpro. Open Digital Archive
Institut de Recerca i Tecnologia Agroalimentàries (IRTA)
[Background]: Highly polygenic traits such as fruit weight, sugar content and acidity strongly influence the agroeconomic value of peach varieties. Genomic Selection (GS) can accelerate peach yield and quality gain if predictions show higher levels o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bbb4c28b1f3171fddeb9a2d9811a21e1
http://hdl.handle.net/2072/438838
http://hdl.handle.net/2072/438838