Zobrazeno 1 - 10
of 57
pro vyhledávání: '"M. Bidkham"'
Publikováno v:
Abstract and Applied Analysis, Vol 2011 (2011)
We prove the Hyers-Ulam stability of power series equation ∑∞𝑛=0𝑎𝑛𝑥𝑛=0, where 𝑎𝑛 for 𝑛=0,1,2,3,… can be real or complex.
Externí odkaz:
https://doaj.org/article/3c91bbdcfe344333b46ba93ed7c1ff2c
Publikováno v:
Abstract and Applied Analysis, Vol 2010 (2010)
We prove the Hyers-Ulam stability of the polynomial equation 𝑎𝑛𝑥𝑛+𝑎𝑛−1𝑥𝑛−1+⋯+𝑎1𝑥+𝑎0=0. We give an affirmative answer to a problem posed by Li and Hua (2009).
Externí odkaz:
https://doaj.org/article/41dab79db6694f2eb64380ed5d2a89b4
Publikováno v:
Journal of Inequalities and Applications, Vol 2009 (2009)
Let p(z) be a polynomial of degree n and for any real or complex number α, and let Dαp(z)=np(z)+(α−z)p′(z) denote the polar derivative of the polynomial p(z) with respect to α. In this paper, we obtain new results concerning the maximum modul
Externí odkaz:
https://doaj.org/article/514a8c7ede374c0eab7a461d6af250ac
Autor:
M. Bidkham, Elahe Khojastehnezhad
Publikováno v:
Ukrains’kyi Matematychnyi Zhurnal. 73:879-886
UDC 517.5 For the rational function $r(z)=p(z)/H(z)$ having all its zeros in $|z|\leq 1,$ it is known that\begin{equation*}|r'(z)|\geq\dfrac{1}{2}|B'(z)||r(z)|\quad \text{for}\quad |z|=1,\end{equation*}where $H(z)=\prod_{j=1}^n(z - c_j),$ $|c_j|>1,$
Autor:
M. Bidkham, Abdullah Mir
Publikováno v:
The Journal of Analysis. 30:1-13
In this paper, we establish some integral-norm estimates for lacunary-type polynomials in the complex plane that are inspired by some classical Bernstein-type inequalities that relate the sup-norm of a polynomial to that of its polar derivative on th
Autor:
M. Bidkham, Elahe Khojastehnezhad
Publikováno v:
Boletim da Sociedade Paranaense de Matemática. 39:223-230
In this paper, we establish some inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.
Publikováno v:
Mathematica Slovaca. 68:369-378
In this paper, we use the Faber polynomial expansion to find upper bounds for |an | (n ≥ 3) coefficients of functions belong to classes H q Σ ( λ , h ) , S T q Σ ( α , h ) and M q Σ ( α , h ) $\begin{array}{} H_{q}^{\Sigma}(\lambda,h),\, ST_{
Autor:
M. Bidkham, Sara Ahamadi
Publikováno v:
Volume: 41, Issue: 6 1618-1627
Turkish Journal of Mathematics
Turkish Journal of Mathematics
The aim of this paper is to extend the domain of the Gauss—Lucas theorem from the set of complex numbers to the set of bicomplex numbers. We also discuss a bicomplex version of another compact generalization of the Gauss—Lucas theorem.
Autor:
T. Shahmansouri, M. Bidkham
Publikováno v:
Tbilisi Math. J. 12, iss. 2 (2019), 177-185
In this paper, we consider a class of rational functions $r(s(z))$ of degree at most $mn$, where $s(z)$ is a polynomial of degree $m$ and obtain a certain sharp compact generalization of well-known inequalities for rational functions.
Autor:
A. Zireh and M. Bidkham
Publikováno v:
Analysis in Theory and Applications. 32:27-37