Zobrazeno 1 - 10
of 588
pro vyhledávání: '"M. Balint"'
Publikováno v:
INCAS Bulletin, Vol 15, Iss 4, Pp 35-40 (2023)
In their in-depth study on cardiac tissue modeling, Clayton and Panfilov [1] present several monodomain or bidomain approaches for the mathematical description of the cardiac tissue action potential dynamics. For simulation of wave propagation in the
Externí odkaz:
https://doaj.org/article/4713b4f4fad64f5b8f50c9309d24fef8
Autor:
Maria S. Gralla, Harald Guendel, Andreas Mueller, Elmar Braehler, Winfried Häuser, Johannes Kruse, Beate Muschalla, Thomas Rigotti, Bernhard Strauss, Elisabeth M. Balint
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023)
Abstract The irritation scale is a widely used and reliable self-report scale for measuring cognitive and emotional strain related to the work environment. It extends existing measures by providing a sensitive assessment for pre-clinical stress at wo
Externí odkaz:
https://doaj.org/article/57213c8937fd49d5a7ad4f094cef0ce8
Autor:
Agneta M. BALINT, Stefan BALINT
Publikováno v:
INCAS Bulletin, Vol 11, Iss 4, Pp 37-48 (2019)
This paper presents six theoretical results concerning the existence and static stability of a capillary free surface appearing in a dewetted Bridgman crystal growth technique. The results are obtained in an axis-symmetric 2D model for semiconductors
Externí odkaz:
https://doaj.org/article/b8c8e21167434d6b9016a1e4d23b1fe1
Autor:
Agneta M. BALINT, Stefan BALINT
Publikováno v:
INCAS Bulletin, Vol 11, Iss 2, Pp 15-28 (2019)
The papers deals with the objectivity in science. It aims at objectively describing the material particle movement and the movement of a continuum body. This is followed by the Riemann-Liouville, Caputo and Cherbirt fractional order derivatives prese
Externí odkaz:
https://doaj.org/article/92b4053f9f2543b2886581eb358248dc
Autor:
Agneta M. BALINT, Stefan BALINT
Publikováno v:
INCAS Bulletin, Vol 10, Iss 3, Pp 37-52 (2018)
This paper is the first part of a 2D description of a single crystal thin plate growth by micro-pulling–down (μ-PD) method. This part concerns the following aspects: the free surface equation and the pressure difference across the free surface (se
Externí odkaz:
https://doaj.org/article/8bbe5479bbc740e4a38e2e7d6cee9dac
Autor:
Agneta M. BALINT, Stefan BALINT
Publikováno v:
INCAS Bulletin, Vol 10, Iss 3, Pp 53-64 (2018)
This paper is the second part of a 2D description of a single crystal thin plate growth by micro-pulling–down (μ-PD) method. This part concerns the following aspects: temperature distribution and melt flow in the melt–crystal system (section 2);
Externí odkaz:
https://doaj.org/article/ae865b9cfdff44e4a732db182b629d21
Autor:
Agneta M. BALINT, Stefan BALINT
Publikováno v:
INCAS Bulletin, Vol 8, Iss 4, Pp 43-58 (2016)
In this paper different types of stabilities (global, local) with respect to instantaneous perturbations and permanent source produced time harmonic perturbations are numerically illustrated in case of a constant spatially developing 2D gas flow. So
Externí odkaz:
https://doaj.org/article/e348a3129bfc47deb69472ab105f6723
Autor:
Agneta M. BALINT, Stefan BALINT
Publikováno v:
INCAS Bulletin, Vol 8, Iss 4, Pp 29-42 (2016)
In this paper different types of stabilities (global, local) with respect to instantaneous perturbations and permanent source produced time harmonic perturbations are numerically illustrated in case of a constant spatially developing 1D gas flow. So
Externí odkaz:
https://doaj.org/article/5ee2524f9b7e4776b40485a0b8e0c64a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.