Zobrazeno 1 - 10
of 29
pro vyhledávání: '"M. B. Branco"'
Publikováno v:
Semigroup Forum. 103:221-235
A numerical semigroup S is dense if for all $$s\in S\backslash \{0\}$$ we have $$\left\{ s-1,s+1\right\} \cap S\ne \emptyset $$ . We give algorithms to compute the whole set of dense numerical semigroups with fixed genus, Frobenius number and multipl
Publikováno v:
Mediterranean Journal of Mathematics. 19
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Submitted by Isabel Melo (imelo@sa.isel.pt) on 2020-07-29T10:31:18Z No. of bitstreams: 1 Positioned_MCFaria.pdf: 404363 bytes, checksum: 1443cfd4d3d70b78f6b9c73bfb06f460 (MD5) Made available in DSpace on 2020-07-29T10:31:18Z (GMT). No. of bitstreams:
Autor:
José Carlos Rosales, M. B. Branco
Publikováno v:
Applicable Algebra in Engineering, Communication and Computing. 32:665-680
A numerical semigroup S is closed under addition of its divisors ( $${\mathcal {C}}$$ -semigroup) if the following condition holds: if $$s\in S\setminus \{0\}$$ and d is a non trivial divisor of s then $$s+d\in S$$ . In this paper we prove that the s
Autor:
M. B. Branco, J. C. Rosales
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Agência para a Sociedade do Conhecimento (UMIC)-FCT-Sociedade da Informação
instacron:RCAAP
Agência para a Sociedade do Conhecimento (UMIC)-FCT-Sociedade da Informação
instacron:RCAAP
Let C be a set of positive integers. In this paper, we obtain an algorithm for computing all subsets A of positive integers which are minimals with the condition that if x1 + … + xn is a partition of an element in C, then at least a summand of this
We define the concentration of a numerical semigroup S as C ( S ) = max next S ( s ) − s ∣ s ∈ S ∖ { 0 } wherein next S ( s ) = min x ∈ S ∣ s x . In this paper, we study the class of numerical semigroups with concentration 2. We give algo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f59da3be1ae885f016cdb9e25c04e526
http://arxiv.org/abs/2103.16723
http://arxiv.org/abs/2103.16723
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
A numerical semigroup S is almost-positioned if for all $$s\in {{\mathbb {N}}}\backslash S$$ we have that $$\mathrm{F}(S)+\mathrm{{m}}(S)+1-s\in S$$ . In this note we give algorithmics for computing the whole set of almost-positioned numerical semigr
Publikováno v:
Digibug: Repositorio Institucional de la Universidad de Granada
Universidad de Granada (UGR)
Digibug. Repositorio Institucional de la Universidad de Granada
instname
Universidad de Granada (UGR)
Digibug. Repositorio Institucional de la Universidad de Granada
instname
The first author was partially supported by MTM-2017-84890-P and by Junta de Andalucia group FQM343. The second author is supported by the project FCT PTDC/MAT/73544/2006).
We would like to thank the referees for their comments and suggestions o
We would like to thank the referees for their comments and suggestions o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c888450b4e5ff404e9fc5a76aed5a3f1
http://hdl.handle.net/10481/69146
http://hdl.handle.net/10481/69146
We study the structure of the family of numerical semigroups with fixed multiplicity and Frobenius number. We give an algorithmic method to compute all the semigroups in this family. As an application we compute the set of all numerical semigroups wi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3cf55fb6cabc54fcd1b8e673aaf2873e
http://arxiv.org/abs/1904.05551
http://arxiv.org/abs/1904.05551
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Agência para a Sociedade do Conhecimento (UMIC)-FCT-Sociedade da Informação
instacron:RCAAP
Agência para a Sociedade do Conhecimento (UMIC)-FCT-Sociedade da Informação
instacron:RCAAP
In this paper, we give formulas for the embedding dimension, the Frobenius number, the type and the genus for a numerical semigroups generated by the Mersenne numbers greater than or equal to a given Mersenne number.