Zobrazeno 1 - 10
of 20
pro vyhledávání: '"M. Antónia Duffner"'
Autor:
M. Antónia Duffner, Rosário Fernandes
Publikováno v:
Linear and Multilinear Algebra. :1-16
Autor:
M. Antónia Duffner, Rosário Fernandes
Publikováno v:
The Electronic Journal of Linear Algebra. 32:76-97
Let $S_n$ denote the symmetric group of degree $n$ and $M_n$ denote the set of all $n$-by-$n$ matrices over the complex field, $\IC$. Let $\chi: S_n\rightarrow \IC$ be an irreducible character of degree greater than $1$ of $S_n$. The immanant $\dc: M
Publikováno v:
Linear Algebra and its Applications. 510:186-191
Let l , m 1 , m 2 , … m l ≥ 2 be positive integers. We describe some linear maps ϕ : M m 1 … m l ( F ) → M m 1 … m l ( F ) satisfying det ( ϕ ( A 1 ⊗ … ⊗ A l ) ) = det ( A 1 ⊗ … ⊗ A l ) , for all A k ∈ M m k ( F ) ,
Publikováno v:
Linear Algebra and its Applications. 438:3654-3660
Let Mn(F) be the linear space of n-square matrices with elements in F where F is a field with at least n elements and whose characteristic is not 2. We prove that if n⩾3 there is no linear transformation T:Mn(F)→Mn(F) satisfying det(X)=0⇔per(T(
Publikováno v:
Linear Algebra and its Applications. 418(1):177-187
We generalize a result in [G. Dolinar, P. Semrl, Determinant preserving maps on matrix algebras, Linear Algebra Appl. 348 (2002) 189–192], proving that if χ and λ are arbitrary irreducible complex characters of Sn and T : Mn(C) → Mn(C) is a sur
Publikováno v:
Linear and Multilinear Algebra. 51:127-136
Let H n ( F ) be the space of n -square symmetric matrices over the field F . We generalize the main result of [M.H. Lim (1979). A note on the relation between the determinant and the permanent. Linear and Multilinear Algebra , 7 , 145-147], proving
Publikováno v:
Special Matrices, Vol 2, Iss 1 (2014)
Letr Σn(C) denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C) -> Σn (C) satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +
Publikováno v:
Linear and Multilinear Algebra. 48:383-408
Let n≥5 and let be an irreducible nonlinear character of Sn such that whenever σ is a transposition or a cycle of length three; furthermore let Tn be the (0, 1)-matrix of order n that has ones exactly on and below the upper neighbours of the main
Publikováno v:
ResearcherID
Let Q n ( C ) denote the space of the n -square skew-symmetric complex matrices and let χ be an irreducible nonlinear complex character of the symmetric group S n , with χ ≠ [ n - 1 , 1 ] , [ 2 , 1 n - 2 ] . We describe the linear operators of Q
Autor:
M. Antónia Duffner
Publikováno v:
Linear and Multilinear Algebra. 42:213-219
Let Sn be the symmectric group of degree n G a subgroup of Sn a field and λ and -valued character of G. We describe the singular matrices A that satisfy and if χ is an irreducible character of Sn , we describe the singular matrices A and B such tha