Zobrazeno 1 - 10
of 33
pro vyhledávání: '"M. A. Sohaly"'
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
Abstract This paper delves into the investigation of the COVID-19 dynamics within a host using the Target-Latent-Infected-Virus (TLIV) model, presenting a fresh approach compared to previous studies. Our model introduces a latent class and explores s
Externí odkaz:
https://doaj.org/article/d45621926d4040869f184c8b535d3f40
Publikováno v:
AIP Advances, Vol 14, Iss 2, Pp 025146-025146-5 (2024)
We investigate the stochastic unstable nonlinear Schrödinger equation through bi-random sources. Specifically, we solve this equation via Itô sense, with the parameter following Laplace and Gumbel distributions. We provide vital stochastic solution
Externí odkaz:
https://doaj.org/article/43a3effd3f71454192ab81a9dc43340e
Autor:
E. S. Aly, M. A. Sohaly, S. Z. Hassan, Noorjahan Abdul Azees, M. Daher Albalwi, Leema Aliyarukunju, Nadia A. Askar
Publikováno v:
AIP Advances, Vol 13, Iss 11, Pp 115302-115302-7 (2023)
This article extracts stochastic soliton waves for the perturbed nonlinear Schödinger’s equation (PNLSE) forced by multiplicative noise through the Itô sense by utilizing two unified solver methods. The presented solutions involve three types: ra
Externí odkaz:
https://doaj.org/article/f26e1d95b108418fa24d2d8701a8203f
Autor:
M. A. Elfouly, M. A. Sohaly
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022)
Abstract The Van der Pol equation is the mathematical model of a second-order ordinary differential equation with cubic nonlinearity. Several studies have been adding time delay to the Van der Pol model. In this paper, the differential equation of th
Externí odkaz:
https://doaj.org/article/3623274ecbd34a44af7d4b26b2616533
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-32 (2021)
Abstract This manuscript is involved in the study of stability of the solutions of functional differential equations (FDEs) with random coefficients and/or stochastic terms. We focus on the study of different types of stability of random/stochastic f
Externí odkaz:
https://doaj.org/article/6300d2f52c834ef49791dbe2e876d08e
Publikováno v:
Journal of Taibah University for Science, Vol 13, Iss 1, Pp 834-843 (2019)
This paper poses the Riccati–Bernoulli sub-ODE method in order to find the exact (random) travelling wave solutions for the (2+1)-dimensional cubic nonlinear Klein–Gordon (cKG) equation and the (2+1)-dimensional nonlinear Zakharov–Kuznetsov mod
Externí odkaz:
https://doaj.org/article/bab8edfd2b3d4bf987ed9c043ac9a98f
Autor:
M. A. Sohaly
Publikováno v:
Advances in Difference Equations, Vol 2019, Iss 1, Pp 1-9 (2019)
Abstract Any random model represents an action where uncertainty is present. In this article, we investigate a random process solution of the random convection–diffusion model using the finite difference technique. Additionally, the consistency and
Externí odkaz:
https://doaj.org/article/cf57a490940b481b904d15104c54ea10
Publikováno v:
Abstract and Applied Analysis, Vol 2016 (2016)
This paper deals with the numerical solution of the random Cauchy one-dimensional heat model. We propose a random finite difference numerical scheme to construct numerical approximations to the solution stochastic process. We establish sufficient con
Externí odkaz:
https://doaj.org/article/ce76cef546934acf94fedc14fb029acd
Autor:
M. A. Sohaly
Publikováno v:
Numerical Heat Transfer, Part B: Fundamentals. 84:83-98
Publikováno v:
Journal of Biological Systems. 30:741-759
The extinction and the persistence of the population of the harmful sheep blowfly (Lucilia cuprina) are discussed in this paper through a stochastic mathematical model. Using appropriate Lyapunov functionals, the extinction of these flies depends on