Zobrazeno 1 - 10
of 155
pro vyhledávání: '"M. A. Najafi"'
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-14 (2023)
Abstract There are various reports about the critical exponents associated with the depinning transition. In this study, we investigate how the disorder strength present in the support can account for this diversity. Specifically, we examine the depi
Externí odkaz:
https://doaj.org/article/2a5c0fa843124d6c86dbf12f97918e86
Publikováno v:
IEEE Transactions on Quantum Engineering, Vol 4, Pp 1-14 (2023)
Quantum computing is a quickly growing field with great potential for future technology. Quantum computers in the current noisy intermediate-scale quantum (NISQ) era face two major limitations:1) qubit count and 2) error vulnerability. Although quant
Externí odkaz:
https://doaj.org/article/e7a43d8b9b6a4e778fd6c47bac819828
Autor:
Zhuowen Zou, Haleh Alimohamadi, Ali Zakeri, Farhad Imani, Yeseong Kim, M. Hassan Najafi, Mohsen Imani
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-13 (2022)
Abstract Recently, brain-inspired computing models have shown great potential to outperform today’s deep learning solutions in terms of robustness and energy efficiency. Particularly, Spiking Neural Networks (SNNs) and HyperDimensional Computing (H
Externí odkaz:
https://doaj.org/article/1ef590384dd34f2a93a811ab7c0e8be4
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-15 (2022)
Abstract This paper is devoted to a phenomenological study of the earthquakes in central Alborz, Iran. Using three observational quantities, namely the weight function, the quality factor, and the velocity model in this region, we develop a modified
Externí odkaz:
https://doaj.org/article/083e81f02c1847c2997f32c765eedc7d
Autor:
Zhuowen Zou, Haleh Alimohamadi, Yeseong Kim, M. Hassan Najafi, Narayan Srinivasa, Mohsen Imani
Publikováno v:
Frontiers in Neuroscience, Vol 16 (2022)
Brain-inspired computing models have shown great potential to outperform today's deep learning solutions in terms of robustness and energy efficiency. Particularly, Hyper-Dimensional Computing (HDC) has shown promising results in enabling efficient a
Externí odkaz:
https://doaj.org/article/bfa7a16eff11448ca23695c3afe9ea94
Publikováno v:
علوم آب و خاک, Vol 24, Iss 3, Pp 49-64 (2020)
Surge tanks and air chambers are the most useful solution to deal with water hammer in water transmission systems (WTS). The optimal design of these protective devices can be effective in reducing the costs of constructing and operating a water trans
Externí odkaz:
https://doaj.org/article/b54de085b9814d2aa3df950e7085e467
Publikováno v:
Archives of Razi Institute, Vol 75, Iss 3, Pp 385-395 (2020)
Toxoid vaccines can provide protective immunity against clostridial diseases. Since the duration of the toxoid vaccine immunogenicity is short, these vaccines need to contain an adjuvant. The nanoparticles of chitosan can stimulate humoral and cell-m
Externí odkaz:
https://doaj.org/article/56ada0199fd747c8adda6a9f4e9eaa50
Publikováno v:
Archives of Razi Institute, Vol 75, Iss 2, Pp 219-225 (2020)
Clostridium septicum, the anaerobic toxigenic bacterium is the agent that causes dangerous disease in man and animals. There is a lethal toxin of the bacterium namely alpha toxin. The ɑ-toxin has hemolytic, necrotic and lethal activities. Today, Raz
Externí odkaz:
https://doaj.org/article/03ebd4b413514035b8d85fdd21ab856b
Autor:
Prathyush Poduval, Haleh Alimohamadi, Ali Zakeri, Farhad Imani, M. Hassan Najafi, Tony Givargis, Mohsen Imani
Publikováno v:
Frontiers in Neuroscience, Vol 16 (2022)
Memorization is an essential functionality that enables today's machine learning algorithms to provide a high quality of learning and reasoning for each prediction. Memorization gives algorithms prior knowledge to keep the context and define confiden
Externí odkaz:
https://doaj.org/article/66866dd16e9e4a04924ead965446b037
Autor:
Peter Schober, Seyedeh Newsha Estiri, Sercan Aygun, Amir Hossein Jalilvand, M. Hassan Najafi, Nima TaheriNejad
Publikováno v:
IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 13:295-311