Zobrazeno 1 - 10
of 40
pro vyhledávání: '"M. A. Gunst"'
Publikováno v:
Bickel, P, Fiocco, M, de Gunst, M & Götze, F 2021, ' Willem van Zwet’s research ', Annals of Statistics, vol. 49, no. 5, pp. 2439-2447 . https://doi.org/10.1214/21-AOS2060
Annals of Statistics, 49(5), 2439-2447. Institute of Mathematical Statistics
Annals of Statistics, 49(5), 2439-2447. Institute of Mathematical Statistics
Willem van Zwet made deep and influential contributions to probability and statistics, which we review in this paper. Bickel and Götze collaborated with him on his major contributions to higher order asymptotics of nonlinear statistics and on resamp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ff971f522b4c7e405509856f51a08690
https://hdl.handle.net/1871.1/ec08535b-0e57-4da0-bfe2-eca2d96b79c8
https://hdl.handle.net/1871.1/ec08535b-0e57-4da0-bfe2-eca2d96b79c8
Publikováno v:
Aflakparast, M & de Gunst, M C M 2019, ' Data integrative Bayesian inference for mixtures of regression models ', Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 68, no. 4, pp. 941-962 . https://doi.org/10.1111/rssc.12346
Journal of the Royal Statistical Society: Series C (Applied Statistics), 68(4), 941-962. Wiley-Blackwell
Journal of the Royal Statistical Society: Series C (Applied Statistics), 68(4), 941-962. Wiley-Blackwell
Summary Modern data collection techniques, which often produce different types of relevant information, call for new statistical learning methods that are adapted to cope with data integration. In the paper Bayesian inference is considered for mixtur
Publikováno v:
de Gunst, MCM, Hautphenne, S, Mandjes, M & Sollie, B 2020, ' Parameter estimation for multivariate population processes: a saddlepoint approach ', Stochastic Models, vol. 37, no. 1, pp. 168-196 . https://doi.org/10.1080/15326349.2020.1832895
Stochastic Models, 37(1), 168-196. Taylor and Francis Ltd.
Stochastic Models, 37(1):168-196. Taylor and Francis Ltd.
Stochastic Models, 37(1), 168-196. Taylor and Francis Ltd.
Stochastic Models, 37(1):168-196. Taylor and Francis Ltd.
The setting considered in this paper concerns a discrete-time multivariate population process under Markov modulation. Our objective is to estimate the model parameters, based on periodic observations of the network population vector. These parameter
Publikováno v:
BMC Bioinformatics, 21:3, 1-13. BioMed Central
Aflakparast, M, Geeven, G & De Gunst, M C M 2020, ' Bayesian mixture regression analysis for regulation of Pluripotency in ES cells ', BMC Bioinformatics, vol. 21, 3, pp. 1-13 . https://doi.org/10.1186/s12859-019-3331-2
BMC Bioinformatics, 21(1). BioMed Central
BMC Bioinformatics, Vol 21, Iss 1, Pp 1-13 (2020)
BMC Bioinformatics
Aflakparast, M, Geeven, G & De Gunst, M C M 2020, ' Bayesian mixture regression analysis for regulation of Pluripotency in ES cells ', BMC Bioinformatics, vol. 21, 3, pp. 1-13 . https://doi.org/10.1186/s12859-019-3331-2
BMC Bioinformatics, 21(1). BioMed Central
BMC Bioinformatics, Vol 21, Iss 1, Pp 1-13 (2020)
BMC Bioinformatics
Background Observed levels of gene expression strongly depend on both activity of DNA binding transcription factors (TFs) and chromatin state through different histone modifications (HMs). In order to recover the functional relationship between local
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::96402ef5754d80fccf96f2422a96e20b
https://research.vu.nl/en/publications/dd55fd2c-bef3-4912-9375-234baef5712d
https://research.vu.nl/en/publications/dd55fd2c-bef3-4912-9375-234baef5712d
Publikováno v:
PLoS ONE, Vol 15, Iss 7, p e0235596 (2020)
Aflakparast, M, de Gunst, M & van Wieringen, W 2020, ' Analysis of Twitter data with the Bayesian fused graphical lasso ', PLoS ONE, vol. 15, no. 7 July, e0235596, pp. e0235596 . https://doi.org/10.1371/journal.pone.0235596
PLoS ONE, 15(7 July):e0235596. Public Library of Science
PLoS ONE, 15(7):e0235596, 1-28. Public Library of Science
Aflakparast, M, de Gunst, M & van Wieringen, W 2020, ' Analysis of Twitter data with the Bayesian fused graphical lasso ', PLoS ONE, vol. 15, no. 7, e0235596, pp. 1-28 . https://doi.org/10.1371/journal.pone.0235596
PLoS ONE
Aflakparast, M, de Gunst, M & van Wieringen, W 2020, ' Analysis of Twitter data with the Bayesian fused graphical lasso ', PLoS ONE, vol. 15, no. 7 July, e0235596, pp. e0235596 . https://doi.org/10.1371/journal.pone.0235596
PLoS ONE, 15(7 July):e0235596. Public Library of Science
PLoS ONE, 15(7):e0235596, 1-28. Public Library of Science
Aflakparast, M, de Gunst, M & van Wieringen, W 2020, ' Analysis of Twitter data with the Bayesian fused graphical lasso ', PLoS ONE, vol. 15, no. 7, e0235596, pp. 1-28 . https://doi.org/10.1371/journal.pone.0235596
PLoS ONE
We propose a method to simplify textual Twitter data into understandable networks of terms that can signify important events and their possible changes over time. The method allows for common characteristics of the networks across time periods and ea
Autor:
Mark A. van de Wiel, Aad van der Vaart, Wessel N. van Wieringen, Mathisca C. M. de Gunst, Gwenaël G. R. Leday, Gino B. Kpogbezan
Publikováno v:
Leday, G G R, De Gunst, M C M, Kpogbezan, G B, Van Der Vaart, A W, Van Wieringen, W N & Van De Wiel, M A 2017, ' Gene network reconstruction using global-local shrinkage priors ', Annals of Applied Statistics, vol. 11, no. 1, pp. 41-68 . https://doi.org/10.1214/16-AOAS990
Annals of Applied Statistics, 11(1), 41-68. Institute of Mathematical Statistics
Ann. Appl. Stat. 11, no. 1 (2017), 41-68
Annals of Applied Statistics, 11(1), 41-68
Leday, G G R, de Gunst, M C M, Kpogbezan, G B, van der Vaart, A W, van Wieringen, W N & van de Wiel, M A 2017, ' Gene network reconstruction using global-local shrinkage priors ', The Annals of Applied Statistics, vol. 11, no. 1, pp. 41-68 . https://doi.org/10.1214/16-AOAS990
The Annals of Applied Statistics, 11(1), 41-68. Institute of Mathematical Statistics
Annals of Applied Statistics
Annals of Applied Statistics, 11(1), 41-68. Institute of Mathematical Statistics
Ann. Appl. Stat. 11, no. 1 (2017), 41-68
Annals of Applied Statistics, 11(1), 41-68
Leday, G G R, de Gunst, M C M, Kpogbezan, G B, van der Vaart, A W, van Wieringen, W N & van de Wiel, M A 2017, ' Gene network reconstruction using global-local shrinkage priors ', The Annals of Applied Statistics, vol. 11, no. 1, pp. 41-68 . https://doi.org/10.1214/16-AOAS990
The Annals of Applied Statistics, 11(1), 41-68. Institute of Mathematical Statistics
Annals of Applied Statistics
Reconstructing a gene network from high-throughput molecular data is often a challenging task, as the number of parameters to estimate easily is much larger than the sample size. A conventional remedy is to regularize or penalize the model likelihood
Publikováno v:
Biometrical Journal, 60(2). Wiley-VCH Verlag
Biometrical Journal, 2017(3), 1-17. Wiley-VCH Verlag
Aflakparast, M, de Gunst, M C M & van Wieringen, W N 2017, ' Reconstruction of molecular network evolution from cross-sectional omics data ', Biometrical Journal, vol. 2017, no. 3, pp. 1-17 . https://doi.org/10.1002/bimj.201700102
Aflakparast, M, de Gunst, M & van Wieringen, WN 2018, ' Reconstruction of molecular network evolution from cross-sectional omics data ', Biometrical Journal, vol. 60, no. 2, pp. 547 . https://doi.org/10.1002/bimj.201700102
Biometrical Journal, 2017(3), 1-17. Wiley-VCH Verlag
Aflakparast, M, de Gunst, M C M & van Wieringen, W N 2017, ' Reconstruction of molecular network evolution from cross-sectional omics data ', Biometrical Journal, vol. 2017, no. 3, pp. 1-17 . https://doi.org/10.1002/bimj.201700102
Aflakparast, M, de Gunst, M & van Wieringen, WN 2018, ' Reconstruction of molecular network evolution from cross-sectional omics data ', Biometrical Journal, vol. 60, no. 2, pp. 547 . https://doi.org/10.1002/bimj.201700102
Cross-sectional studies may shed light on the evolution of a disease like cancerthrough the comparison of patient traits among disease stages. This problem is especially challenging when a gene–gene interaction network needs to be reconstructed fro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ef6234e0aae2dc7f726fc54428cb7101
https://research.vumc.nl/en/publications/5c104148-6893-40a2-bb98-b50405e317db
https://research.vumc.nl/en/publications/5c104148-6893-40a2-bb98-b50405e317db
Publikováno v:
Ros, B P, Bijma, F, de Gunst, M C M & de Munck, J C 2015, ' A three domain covariance framework for EEG/MEG data ', NeuroImage, vol. 119, pp. 305-315 . https://doi.org/10.1016/j.neuroimage.2015.06.020
NeuroImage, 119, 305-315. Academic Press Inc.
NeuroImage, 119, 305-315. Academic Press Inc.
In this paper we introduce a covariance framework for the analysis of single subject EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance m
Publikováno v:
Ros, B P, Bijma, F, de Munck, J C & de Gunst, M C M 2016, ' Existence and uniqueness of the maximum likelihood estimator for models with a Kronecker product covariance structure ', Journal of Multivariate Analysis, vol. 143, doi.org/10.1016/j.jmva.2015.05.019, pp. 345-361 . https://doi.org/10.1016/j.jmva.2015.05.019
Journal of Multivariate Analysis, 143, 345-361. Academic Press Inc.
Journal of Multivariate Analysis, 143:doi.org/10.1016/j.jmva.2015.05.019, 345-361. Academic Press Inc.
Ros, B P, Bijma, F, de Munck, J C & de Gunst, M C M 2016, ' Existence and uniqueness of the maximum likelihood estimator for models with a Kronecker product covariance structure ', Journal of Multivariate Analysis, vol. 143, pp. 345-361 . https://doi.org/10.1016/j.jmva.2015.05.019
Journal of Multivariate Analysis, 143, 345-361. Academic Press Inc.
Journal of Multivariate Analysis, 143:doi.org/10.1016/j.jmva.2015.05.019, 345-361. Academic Press Inc.
Ros, B P, Bijma, F, de Munck, J C & de Gunst, M C M 2016, ' Existence and uniqueness of the maximum likelihood estimator for models with a Kronecker product covariance structure ', Journal of Multivariate Analysis, vol. 143, pp. 345-361 . https://doi.org/10.1016/j.jmva.2015.05.019
This paper deals with multivariate Gaussian models for which the covariance matrix is a Kronecker product of two matrices. We consider maximum likelihood estimation of the model parameters, in particular of the covariance matrix. There is no explicit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3aa712ced75cae816b58f014a923cb5d
https://research.vu.nl/en/publications/89f568a1-0f03-475c-a3c2-f192292b3f16
https://research.vu.nl/en/publications/89f568a1-0f03-475c-a3c2-f192292b3f16
Publikováno v:
Twin Research, 7(6), 607-16. Australian Academic Press
Twin Research, 6, 7, 607-616
Dommelen, P, de Gunst, M C M, van der Vaart, A W & Boomsma, D I 2004, ' Genetic study of the height and weight process during infancy. ', Twin Research, vol. 7, no. 6, pp. 607-616 . https://doi.org/10.1375/1369052042663805
van Dommelen, P, de Gunst, M C M, van der Vaart, A W & Boomsma, D I 2004, ' Genetic study of the height and weight process during infancy ', Twin Research, vol. 7, no. 6, pp. 607-16 . https://doi.org/10.1375/1369052042663805
Twin Research, 7(6), 607-616. Australian Academic Press
Twin Research, 6, 7, 607-616
Dommelen, P, de Gunst, M C M, van der Vaart, A W & Boomsma, D I 2004, ' Genetic study of the height and weight process during infancy. ', Twin Research, vol. 7, no. 6, pp. 607-616 . https://doi.org/10.1375/1369052042663805
van Dommelen, P, de Gunst, M C M, van der Vaart, A W & Boomsma, D I 2004, ' Genetic study of the height and weight process during infancy ', Twin Research, vol. 7, no. 6, pp. 607-16 . https://doi.org/10.1375/1369052042663805
Twin Research, 7(6), 607-616. Australian Academic Press
Longitudinal height and weight data from 4649 Dutch twin pairs between birth and 2.5 years of age were analyzed. The data were first summarized into parameters of a polynomial of degree 4 by a mixed-effects procedure. Next, the variation and covariat