Zobrazeno 1 - 10
of 19
pro vyhledávání: '"M. A. Duffner"'
Autor:
M. Antónia Duffner, Rosário Fernandes
Publikováno v:
Linear and Multilinear Algebra. :1-16
Publikováno v:
Linear Algebra and its Applications. 618:76-96
Let Q n denote the space of all n × n skew-symmetric matrices over the complex field C and T : Q n → Q n be a map satisfying the condition d χ ′ ( T ( A ) + z T ( B ) ) = d χ ( A + z B ) for all matrices A , B ∈ Q n and all constants z ∈ C
Publikováno v:
Journal of Mathematical Sciences. 255:242-253
Let Qn denote the space of all n × n skew-symmetric matrices over the complex field ℂ. It is proved that for n = 4, there are no linear maps T : Q4 → Q4 satisfying the condition dχ' (T (A)) = dχ(A) for all matrices A ∈ Q4, where χ, χ' ∈
Publikováno v:
Journal of Mathematical Sciences. 240:724-732
Let Qn(ℂ) denote the space of all skew-symmetric n × n matrices over the complex field ℂ. The paper characterizes the linear mappings T : Qn(ℂ) → Qn(ℂ) that satisfy the condition per(T(A)) = per(A) for all matrices A ∈ Qn(ℂ) and an arb
Autor:
M. A. Duffner, Alexander Guterman
Publikováno v:
Lobachevskii Journal of Mathematics. 38:630-636
Let Σ n (F) denote the space of all n×n symmetricmatrices over the complex field F, and χ be an irreducible character of S n and d χ the immanant associated with χ. The main objective of this paper is to prove that the maps Φ: Σ n (F) → Σ n
Autor:
M. Antónia Duffner, Rosário Fernandes
Publikováno v:
The Electronic Journal of Linear Algebra. 32:76-97
Let $S_n$ denote the symmetric group of degree $n$ and $M_n$ denote the set of all $n$-by-$n$ matrices over the complex field, $\IC$. Let $\chi: S_n\rightarrow \IC$ be an irreducible character of degree greater than $1$ of $S_n$. The immanant $\dc: M
Autor:
Fernando C. Silva, M. Graça Duffner
Publikováno v:
Linear Algebra and its Applications. 515:321-330
We study the existence of unimodular matrices with a prescribed submatrix over a ring R . In particular, when either R is Hermite and Dedekind finite or R has stable range one, we give necessary and sufficient conditions for the existence of these un
Publikováno v:
Linear Algebra and its Applications. 510:186-191
Let l , m 1 , m 2 , … m l ≥ 2 be positive integers. We describe some linear maps ϕ : M m 1 … m l ( F ) → M m 1 … m l ( F ) satisfying det ( ϕ ( A 1 ⊗ … ⊗ A l ) ) = det ( A 1 ⊗ … ⊗ A l ) , for all A k ∈ M m k ( F ) ,
Autor:
M. Graça Duffner, Fernando C. Silva
Publikováno v:
Linear Algebra and its Applications. 486:443-448
E.M. Sa and R.C. Thompson proved that the invariant factors of a matrix over a commutative principal ideal domain and the invariant factors of its submatrices are related by a set of divisibility inequalities, called the interlacing inequalities for
Publikováno v:
Linear Algebra and its Applications. 438:3654-3660
Let Mn(F) be the linear space of n-square matrices with elements in F where F is a field with at least n elements and whose characteristic is not 2. We prove that if n⩾3 there is no linear transformation T:Mn(F)→Mn(F) satisfying det(X)=0⇔per(T(