Zobrazeno 1 - 10
of 14
pro vyhledávání: '"M. A. Cheshkova"'
Autor:
M. A. Cheshkova
Publikováno v:
Дифференциальная геометрия многообразий фигур, Vol 55, Iss 1, Pp 81-88 (2024)
The work is devoted to the study of the Bianchi transform for surfaces of constant negative Gaussian curvature. The surfaces of rotation of constant negative Gaussian curvature are the Mining top, the Minding coil, the pseudosphere (Beltrami surfac
Externí odkaz:
https://doaj.org/article/73eea975579048eead47125fc7111071
Autor:
M. A. Cheshkova
Publikováno v:
Дифференциальная геометрия многообразий фигур, Vol 54, Iss 2, Pp 71-77 (2023)
The work is devoted to the study of the Bianchi transform for surfaces of constant negative Gaussian curvature. The surfaces of rotation of constant negative Gaussian curvature are the Minding top, the Minding coil, the pseudosphere (Beltrami sur
Externí odkaz:
https://doaj.org/article/e351e5a65661421b9fbf292cd8365e26
Autor:
M. A. Cheshkova
Publikováno v:
Дифференциальная геометрия многообразий фигур, Iss 50, Pp 148-154 (2019)
A surface in E3 is called parallel to the surface M if it consists of the ends of constant length segments, laid on the normals to the surfaces at points of this surface. The tangent planes at the corresponding points will be parallel. For surfaces i
Externí odkaz:
https://doaj.org/article/9ecdf9c76d274c2e89d83aae80f34562
Autor:
M. A. Cheshkova
Publikováno v:
Дифференциальная геометрия многообразий фигур, Iss 51, Pp 135-142 (2021)
The work is devoted to the study of the Bianchi transform for surfaces of revolution of constant negative Gaussian curvature. The surfaces of rotation of constant negative Gaussian curvature are the Minding top, the Minding coil, the pseudosphere (
Autor:
M. A. Cheshkova
Publikováno v:
Journal of Mathematical Sciences. 253:360-368
Using the mathematical MAPLE package, we construct models of surfaces of revolution of constant Gaussian curvature and geodesic lines on such surfaces.
Autor:
M. A. Cheshkova
Publikováno v:
Sibirskii zhurnal chistoi i prikladnoi matematiki. 18:64-74
Autor:
M. A. Cheshkova
Publikováno v:
Sbornik: Mathematics. 191:937-943
A multidimensional analogue of the cyclides of Dupin is considered: double canal hypersurfaces. A generalization is proved of the theorem about the set of centres C1 and C2 of the generating hyperspheres.
Autor:
M. A. Cheshkova
Publikováno v:
Mathematical Notes. 75:444-446
Autor:
M. A. Cheshkova
Publikováno v:
Siberian Mathematical Journal. 36:208-212
Autor:
M. A. Cheshkova
Publikováno v:
Mathematical Notes. 70:727-729