Zobrazeno 1 - 10
of 24
pro vyhledávání: '"M R, Mumpower"'
Publikováno v:
The Astrophysical Journal, Vol 944, Iss 2, p 144 (2023)
The rapid neutron capture process ( r -process) is one of the main mechanisms whereby elements heavier than iron are synthesized, and is entirely responsible for the natural production of the actinides. Kilonova emissions are modeled as being largely
Externí odkaz:
https://doaj.org/article/e755b3bb70f044c888bac34e3e3c7746
The rapid neutron capture or 'r process' of nucleosynthesis is believed to be responsible for the production of approximately half the natural abundance of heavy elements found on the periodic table above iron (with proton number $Z=26$) and all of t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::212e7e1e309b7f9d7d848ee12288970d
Publikováno v:
Physical Review C. 106
Beta-delayed neutron emission and $\beta$-delayed fission ($\beta$df) probabilities were calculated for heavy, neutron-rich nuclei using the Los Alamos coupled Quasi-Particle Random Phase Approximation plus Hauser-Feshbach (QRPA+HF) approach. In this
We extend previous ab initio calculations of lanthanide opacities (Fontes et al., 2020, MNRAS, 493, 4143) to include a complete set of actinide opacities for use in the modeling of kilonova light curves and spectra. Detailed, fine-structure line feat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91699b67314b02bc324da3ae566a5b14
http://arxiv.org/abs/2209.12759
http://arxiv.org/abs/2209.12759
Publikováno v:
Physical Review C. 106
We present a novel approach to modeling the ground state mass of atomic nuclei based directly on a probabilistic neural network constrained by relevant physics. Our Physically Interpretable Machine Learning (PIML) approach incorporates knowledge of p
Publikováno v:
Physical Review C. 106
Machine learning methods and uncertainty quantification have been gaining interest throughout the last several years in low-energy nuclear physics. In particular, Gaussian processes and Bayesian Neural Networks have increasingly been applied to impro
Autor:
R. Orford, N. Vassh, J. A. Clark, G. C. McLaughlin, M. R. Mumpower, D. Ray, G. Savard, R. Surman, F. Buchinger, D. P. Burdette, M. T. Burkey, D. A. Gorelov, J. W. Klimes, W. S. Porter, K. S. Sharma, A. A. Valverde, L. Varriano, X. L. Yan
Publikováno v:
Physical Review C. 105
Autor:
H. F. Li, S. Naimi, T. M. Sprouse, M. R. Mumpower, Y. Abe, Y. Yamaguchi, D. Nagae, F. Suzaki, M. Wakasugi, H. Arakawa, W. B. Dou, D. Hamakawa, S. Hosoi, Y. Inada, D. Kajiki, T. Kobayashi, M. Sakaue, Y. Yokoda, T. Yamaguchi, R. Kagesawa, D. Kamioka, T. Moriguchi, M. Mukai, A. Ozawa, S. Ota, N. Kitamura, S. Masuoka, S. Michimasa, H. Baba, N. Fukuda, Y. Shimizu, H. Suzuki, H. Takeda, D. S. Ahn, M. Wang, C. Y. Fu, Q. Wang, S. Suzuki, Z. Ge, Yu. A. Litvinov, G. Lorusso, P. M. Walker, Zs. Podolyak, T. Uesaka
Publikováno v:
Physical Review Letters. 128
Autor:
M. R. Mumpower, T. M. Sprouse, T. Kawano, M. W. Herman, A. E. Lovell, G. W. Misch, D. Neudecker, H. Sasaki, I. Stetcu, P. Talou
Nuclear data is critical for many modern applications from stockpile stewardship to cutting edge scientific research. Central to these pursuits is a robust pipeline for nuclear modeling as well as data assimilation and dissemination. We summarize a s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e43291ef91b0d9fb7808e38d0aa7d8a
Autor:
M. R. Mumpower, D. Neudecker, H. Sasaki, T. Kawano, A. E. Lovell, M. W. Herman, I. Stetcu, M. Dupuis
Publikováno v:
Phys.Rev.C
Phys.Rev.C, 2023, 107 (3), pp.034606. ⟨10.1103/PhysRevC.107.034606⟩
Phys.Rev.C, 2023, 107 (3), pp.034606. ⟨10.1103/PhysRevC.107.034606⟩
The pre-equilibrium reaction mechanism is considered in the context of the exciton model. A modification to the one-particle one-hole state density is studied which can be interpreted as a collective enhancement. The magnitude of the collective enhan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f9cafbbd632653cde066985879091dec