Zobrazeno 1 - 10
of 697
pro vyhledávání: '"M M, Hall"'
Autor:
T. V. Nguyen, S. M. Diakiw, M. D. VerMilyea, A. W. Dinsmore, M. Perugini, D. Perugini, J. M. M. Hall
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-19 (2023)
Abstract Medical datasets inherently contain errors from subjective or inaccurate test results, or from confounding biological complexities. It is difficult for medical experts to detect these elusive errors manually, due to lack of contextual inform
Externí odkaz:
https://doaj.org/article/2226d610176a46398c5a9f23564ec38c
Autor:
T. V. Nguyen, M. A. Dakka, S. M. Diakiw, M. D. VerMilyea, M. Perugini, J. M. M. Hall, D. Perugini
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-12 (2022)
Abstract Training on multiple diverse data sources is critical to ensure unbiased and generalizable AI. In healthcare, data privacy laws prohibit data from being moved outside the country of origin, preventing global medical datasets being centralize
Externí odkaz:
https://doaj.org/article/1199058a52154e45a2d3007a4508e14b
Autor:
T. V. Nguyen, S. M. Diakiw, M. D. VerMilyea, A. W. Dinsmore, M. Perugini, D. Perugini, J. M. M. Hall
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-1 (2023)
Externí odkaz:
https://doaj.org/article/57081c79a57b45139419f4f8ab66eb0f
Autor:
M. A. Dakka, T. V. Nguyen, J. M. M. Hall, S. M. Diakiw, M. VerMilyea, R. Linke, M. Perugini, D. Perugini
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
Abstract The detection and removal of poor-quality data in a training set is crucial to achieve high-performing AI models. In healthcare, data can be inherently poor-quality due to uncertainty or subjectivity, but as is often the case, the requiremen
Externí odkaz:
https://doaj.org/article/92ef4fc958d544dcababaa3db903e24e
Training on multiple diverse data sources is critical to ensure unbiased and generalizable AI. In healthcare, data privacy laws prohibit data from being moved outside the country of origin, preventing global medical datasets being centralized for AI
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9dcebe052a83ceafdd0195e8789392b9
https://doi.org/10.21203/rs.3.rs-1371143/v1
https://doi.org/10.21203/rs.3.rs-1371143/v1
Autor:
S M Diakiw, J M M Hall, M D VerMilyea, J Amin, J Aizpurua, L Giardini, Y G Briones, A Y X Lim, M A Dakka, T V Nguyen, D Perugini, M Perugini
Publikováno v:
Human reproduction (Oxford, England). 37(8)
STUDY QUESTION Can an artificial intelligence (AI) model predict human embryo ploidy status using static images captured by optical light microscopy? SUMMARY ANSWER Results demonstrated predictive accuracy for embryo euploidy and showed a significant
Publikováno v:
Human Reproduction. 36
Study question Does embryo quality/viability change over time, suggesting the use of video for AI-based embryo quality assessment has limited benefit over single point-in-time images? Summary answer AI assessment of single static embryo images at mul
Autor:
Tan H. Nguyen, M A Dakka, S Diakiw, D Perugini, M VerMilyea, Jonathan M. M. Hall, K Sorby, Michelle Perugini
Publikováno v:
Human Reproduction. 36
Study question Do artificial intelligence (AI) models used to assess embryo viability (based on pregnancy outcomes) also correlate with known embryo quality measures such as Gardner score? Summary answer An AI for embryo viability assessment also cor
Autor:
Jonathan M. M. Hall, Michelle Perugini, S Diakiw, Tan H. Nguyen, M A Dakka, Matthew David VerMilyea, D Perugini
Publikováno v:
Human Reproduction. 36
Study question Do AI models used to assess embryo viability (based on pregnancy outcome) also correlate with known embryo quality measures such as ploidy status? Summary answer An AI for embryo viability assessment correlated with ploidy status, and
Autor:
Michelle Perugini, Jonathan M. M. Hall, A Picou, M VerMilyea, Tan H. Nguyen, S Diakiw, Annalee Murphy, Adrian Johnston, A Miller, D Perugini
Publikováno v:
Human Reproduction (Oxford, England)
STUDY QUESTION Can an artificial intelligence (AI)-based model predict human embryo viability using images captured by optical light microscopy? SUMMARY ANSWER We have combined computer vision image processing methods and deep learning techniques to