Zobrazeno 1 - 10
of 116
pro vyhledávání: '"M K, Kerimov"'
Publikováno v:
Computational Mathematics and Mathematical Physics. 58:471-477
Estimates of the remainders of certain quadrature formulas are obtained, in particular, of quadrature formulas with nodes that are the zeros of Chebyshev polynomials of the first kind in classes of differentiable functions characterized by a generali
Autor:
M. K. Kerimov
Publikováno v:
Computational Mathematics and Mathematical Physics. 58:1-37
This paper is the fourth in a series of survey articles concerning zeros of Bessel functions and methods for their computation. Various inequalities, estimates, expansions, etc. for positive zeros are analyzed, and some results are described in detai
Publikováno v:
Computational Mathematics and Mathematical Physics. 57:1735-1740
The problem of approximation of a differentiable function of two variables by partial sums of a double Fourier–Bessel series is considered. Sharp estimates of the rate of convergence of the double Fourier–Bessel series on the class of differentia
Publikováno v:
Computational Mathematics and Mathematical Physics. 57:1559-1576
Some problems in computational mathematics and mathematical physics lead to Fourier series expansions of functions (solutions) in terms of special functions, i.e., to approximate representations of functions (solutions) by partial sums of correspondi
Autor:
M. K. Kerimov
Publikováno v:
Computational Mathematics and Mathematical Physics. 56:1949-1991
This paper continues the study of real zeros of Bessel functions begun in the previous parts of this work (see M. K. Kerimov, Comput. Math. Math. Phys. 54 (9), 1337–1388 (2014); 56 (7), 1175–1208 (2016)). Some new results regarding the monotonici
Autor:
M. K. Kerimov
Publikováno v:
Computational Mathematics and Mathematical Physics. 56:1175-1208
This work continues the study of real zeros of first- and second-kind Bessel functions and Bessel general functions with real variables and orders begun in the first part of this paper (see M.K. Kerimov, Comput. Math. Math. Phys. 54 (9), 1337–1388
Autor:
V. A. Gushchin, Igor B. Petrov, V. B. Betelin, V. L. Yakushev, O. V. Troshkin, A. I. Tolstykh, A. V. Babakov, L. I. Turchak, M. K. Kerimov, S. L. Chernyshov, Boris N. Chetverushkin, N. S. Vishnyakov, A. S. Kholodov
Publikováno v:
Computational Mathematics and Mathematical Physics. 56:911-915
Autor:
M. K. Kerimov, E. V. Selimkhanov
Publikováno v:
Computational Mathematics and Mathematical Physics. 56:717-729
The work is devoted to exact estimates of the convergence rate of Fourier series in the trigonometric system in the space of square summable 2π-periodic functions with the Euclidean norm on certain classes of functions characterized by the generaliz
Autor:
V. F. Tishkin, V. M. Goloviznin, M. P. Galanin, G. G. Malinetskii, Yu. P. Popov, E. I. Moiseev, A. V. Gulin, S. I. Mukhin, Boris N. Chetverushkin, V. A. Gasilov, M. K. Kerimov, N. V. Sosnin
Publikováno v:
Computational Mathematics and Mathematical Physics. 55:1257-1263
Publikováno v:
Computational Mathematics and Mathematical Physics. 55:1094-1102
Sharp estimates are obtained for the convergence rate of “triangular” and “hyperbolic” partial sums of Fourier series in orthogonal (Laguerre, Hermite, Jacobi) polynomials in the classes of differentiable functions of two variables characteri