Zobrazeno 1 - 10
of 153
pro vyhledávání: '"Müller, Vladimir"'
We propose a new approach to the study of (nonlinear) growth and instability for semilinear evolution equations with compact nonlinearities. We show, in particular, that compact nonlinear perturbations of a linear evolution equation can be treated as
Externí odkaz:
http://arxiv.org/abs/2211.15121
Autor:
Müller, Vladimir, Tomilov, Yuri
We show that under natural and quite general assumptions, a large part of a matrix for a bounded linear operator on a Hilbert space can be preassigned. The result is obtained in a more general setting of operator tuples leading to interesting consequ
Externí odkaz:
http://arxiv.org/abs/2206.14266
Autor:
Müller, Vladimir, Peperko, Aljoša
Several spectral radii formulas for infinite bounded nonnegative matrices in max algebra are obtained. We also prove some Perron-Frobenius type results for such matrices. In particular, we obtain results on block triangular forms, which are similar t
Externí odkaz:
http://arxiv.org/abs/2201.02123
Autor:
Müller, Vladimir, Tomilov, Yuri
Given a bounded linear operator $T$ on separable Hilbert space, we develop an approach allowing one to construct a matrix representation for $T$ having certain specified algebraic or asymptotic structure. We obtain matrix representations for $T$ with
Externí odkaz:
http://arxiv.org/abs/2010.09126
Autor:
Müller, Vladimir, Tomilov, Yuri
We show that the set of all possible constant diagonals of a bounded Hilbert space operator is always convex. This, in particular, answers an open question of J.-C. Bourin ($2003$). Moreover, we show that the joint numerical range of a commuting oper
Externí odkaz:
http://arxiv.org/abs/2010.09129
We show that a Hilbert space bounded linear operator has an $m$-isometric lifting for some integer $m\ge 1$ if and only if the norms of its powers grow polynomially. In analogy with unitary dilations of contractions, we prove that such operators also
Externí odkaz:
http://arxiv.org/abs/2003.12741
Autor:
Eisner, Tanja, Müller, Vladimir
Let $T$ be a power bounded Hilbert space operator without unimodular eigenvalues. We show that the subsequential ergodic averages $N^{-1}\sum_{n=1}^N T^{a_n}$ converge in the strong operator topology for a wide range of sequences $(a_n)$, including t
Externí odkaz:
http://arxiv.org/abs/2001.05804
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.