Zobrazeno 1 - 10
of 128
pro vyhledávání: '"Müller, Mike"'
Autor:
Müller, Mike-Freya
Das Selenoprotein Glutathionperoxidase 2 (GPx2) ist ein epithelzellspezifisches, Hydroperoxide-reduzierendes Enzym, welches im Darmepithel, vor allem in den proliferierenden Zellen des Kryptengrundes, exprimiert wird. Die Aufrechterhaltung der GPx2-E
Externí odkaz:
http://opus.kobv.de/ubp/volltexte/2013/6695/
This paper studies new properties of the front and back ends of a sorting network, and illustrates the utility of these in the search for new bounds on optimal sorting networks. Search focuses first on the "outsides" of the network and then on the in
Externí odkaz:
http://arxiv.org/abs/1507.01428
Autor:
Holub, Štěpán, Müller, Mike
Publikováno v:
Theoretical Computer Science 684 (2017) 53-58
We characterize binary words that have exactly two unbordered conjugates and show that they can be expressed as a product of two palindromes.
Comment: A significantly expanded version
Comment: A significantly expanded version
Externí odkaz:
http://arxiv.org/abs/1504.02222
Autor:
Ehlers, Thorsten, Müller, Mike
We present new parallel sorting networks for $17$ to $20$ inputs. For $17, 19,$ and $20$ inputs these new networks are faster (i.e., they require less computation steps) than the previously known best networks. Therefore, we improve upon the known up
Externí odkaz:
http://arxiv.org/abs/1501.06946
Autor:
Müller, Mike.
Publikováno v:
Download (PDF) via World Wide Web für Universität St. Gallen.
Bachelor-Arbeit Univ. St. Gallen, 2008.
Autor:
Ehlers, Thorsten, Müller, Mike
We present new parallel sorting networks for $17$ to $20$ inputs. For $17, 19,$ and $20$ inputs these new networks are faster (i.e., they require less computation steps) than the previously known best networks. Therefore, we improve upon the known up
Externí odkaz:
http://arxiv.org/abs/1410.2736
In this paper we answer two recent questions from Charlier et al. and Harju about self-shuffling words. An infinite word $w$ is called self-shuffling, if $w=\prod_{i=0}^\infty U_iV_i=\prod_{i=0}^\infty U_i=\prod_{i=0}^\infty V_i$ for some finite word
Externí odkaz:
http://arxiv.org/abs/1401.6536
Autor:
Harju, Tero, Müller, Mike
Let $u \shuffle v$ denote the set of all shuffles of the words $u$ and $v$. It is shown that for each integer $n \geq 3$ there exists a square-free ternary word $u$ of length $n$ such that $u\shuffle u$ contains a square-free word. This property is t
Externí odkaz:
http://arxiv.org/abs/1309.2137
Publikováno v:
In Journal of Computer and System Sciences September 2019 104:184-201
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.