Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Mühenad Bilal"'
Autor:
Mühenad Bilal, Ranadheer Podishetti, Leonid Koval, Mahmoud A. Gaafar, Daniel Grossmann, Markus Bregulla
Publikováno v:
Sensors, Vol 24, Iss 15, p 4777 (2024)
In this work, we investigate the impact of annotation quality and domain expertise on the performance of Convolutional Neural Networks (CNNs) for semantic segmentation of wear on titanium nitride (TiN) and titanium carbonitride (TiCN) coated end mill
Externí odkaz:
https://doaj.org/article/24d9d36b25564a068c5e2a9fd495ec23
Autor:
Mühenad Bilal, Christian Mayer, Sunil Kancharana, Markus Bregulla, Rafal Cupek, Adam Ziebinski
Publikováno v:
Advances in Computational Collective Intelligence ISBN: 9783031162091
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::435ea3c856ea0035282b02bbe2e7a14e
https://doi.org/10.1007/978-3-031-16210-7_21
https://doi.org/10.1007/978-3-031-16210-7_21
Autor:
Mühenad Bilal, Sunil Kancharana, Christian Mayer, Daniel Pfaller, Leonid Koval, Markus Bregulla, Rafal Cupek, Adam Ziębiński
Publikováno v:
Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
Publikováno v:
Advances in Computational Collective Intelligence ISBN: 9783030881122
ICCCI (CCIS Volume)
ICCCI (CCIS Volume)
This paper analyzes the use of different Neural Network architectures on two different sets of machine tool images. The sets are either composed of images that were taken with a low-quality camera or catalog photos. The task was to classify of the di
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::47d72672767ea2221788d5fc2ca218c9
https://doi.org/10.1007/978-3-030-88113-9_37
https://doi.org/10.1007/978-3-030-88113-9_37
Autor:
Muhenad Bilal, Ranadheer Podishetti, Leonid Koval, Mahmoud A. Gaafar, Daniel Grossmann, Markus Bregulla
Publikováno v:
IEEE Access, Vol 12, Pp 124282-124297 (2024)
Ensuring cutting tools are in optimal condition is essential for achieving peak machining performance, given their direct impact on both workpiece quality and process efficiency. However, accurately assessing wear on end mills, especially those with
Externí odkaz:
https://doaj.org/article/244c9aa0911b420a9f857b3e9777f6b2
Publikováno v:
Physical Review B. 95
The physics of charge separation in organic semiconductors is a topic of ongoing research of relevance to material and device engineering. Herein, we present experimental observations of the field and temperature dependence of charge separation from
Autor:
Dominik Gehrig, Ian A. Howard, Mühenad Bilal, Andreas P. Arndt, Marina Gerhard, Martin Koch, Frédéric Laquai, Uli Lemmer, Arash Rahimi-Iman
Publikováno v:
SPIE Proceedings.
In organic photovoltaics (OPV), perylene diimide (PDI) acceptor materials are promising candidates to replace the commonly used, but more expensive fullerene derivatives. The use of alternative acceptor materials however implies new design guidelines