Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Müge Kanuni"'
Publikováno v:
Moscow Mathematical Journal. 19:523-548
Kanuni, Muge/0000-0001-7436-039X WOS: 000476630800004 We classify row-finite Leavitt path algebras associated to graphs with no more than two vertices. For the discussion we use the following invariants: decomposability, the K-0 group, det(N-E') (inc
Autor:
Müge Kanuni, Ozkay Ozkan
Publikováno v:
Volume: 50, Issue: 2 453-470
Hacettepe Journal of Mathematics and Statistics
Hacettepe Journal of Mathematics and Statistics
Let $R$ be a ring with identity and $I(X,R)$ be the incidence ring of a locally finite partially ordered set $X$ over $R.$ In this paper, we compute the socle and the singular ideal of the incidence ring for some $X$ in terms of the socle of $R$ and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::86876fec3ca45bf80e5e95171047a740
https://dergipark.org.tr/tr/pub/hujms/issue/61276/684042
https://dergipark.org.tr/tr/pub/hujms/issue/61276/684042
Autor:
Müge Kanuni Er, Songül Esin
Publikováno v:
Volume: 42, Issue: 5 2081-2090
Turkish Journal of Mathematics
Turkish Journal of Mathematics
Kanuni, Muge/0000-0001-7436-039X; ESIN, SONGUL/0000-0002-1480-4566 WOS: 000447946800001 Let E be an arbitrary directed graph and let L be the Leavitt path algebra of the graph E over a field K. The necessary and sufficient conditions are given to ass
Autor:
Suat Sert, Müge Kanuni
Publikováno v:
Leavitt Path Algebras and Classical K-Theory ISBN: 9789811516108
There is extensive recent literature on the graded, non-graded, prime, primitive, maximal ideals of Leavitt path algebras. In this introductory level survey, we will be giving an overview of different types of ideals and the correspondence between th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5ce6c0216aad8d0de7898a1a949b1158
https://doi.org/10.1007/978-981-15-1611-5_5
https://doi.org/10.1007/978-981-15-1611-5_5
WOS: 000517611200006
We identify the largest ideals in Leavitt path algebras: the largest locally left/right artinian (which is the largest semisimple one), the largest locally left/right noetherian without minimal idempotents, the largest excha
We identify the largest ideals in Leavitt path algebras: the largest locally left/right artinian (which is the largest semisimple one), the largest locally left/right noetherian without minimal idempotents, the largest excha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a4b168294c7a734bc0e8a86409162b3d
https://hdl.handle.net/20.500.12684/10711
https://hdl.handle.net/20.500.12684/10711
Molina, Mercedes Siles/0000-0002-4299-5187; Kanuni, Muge/0000-0001-7436-039X; Cabrera Casado, Yolanda/0000-0003-4299-4392 WOS: 000462811200007 With the aim of finding useful tools and invariants to classify finite dimensional evolution algebras, we i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::466944e9d262132658ba90387828e894
https://hdl.handle.net/20.500.12684/2896
https://hdl.handle.net/20.500.12684/2896
Pr\"{u}fer domains and subclasses of integral domains such as Dedekind domains admit characterizations by means of the properties of their ideal lattices. Interestingly, a Leavitt path algebra $L$, in spite of being non-commutative and possessing ple
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::64113c30738e6f917a31279f412395b7
https://hdl.handle.net/20.500.12684/493
https://hdl.handle.net/20.500.12684/493
Publikováno v:
Communications in Algebra. 39:3836-3848
Let R be a ring with identity and I(X, R) be the incidence algebra of a locally finite partially ordered set X over R. In this article, we investigate the necessary and sufficient conditions for the incidence ring to be Ikeda-Nakayama, nil injective,
Let $E$ be an arbitrary directed graph and let $L$ be the Leavitt path algebra of the graph $E$ over a field $K$. It is shown that every ideal of $L$ is an intersection of primitive/prime ideals in $L$ if and only if the graph $E$ satisfies Condition
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6454e0b3116e4fe55c33bff6e41a3d07
http://arxiv.org/abs/1510.08871
http://arxiv.org/abs/1510.08871
Autor:
Müge Kanuni
Publikováno v:
Communications in Algebra. 31:5287-5304
In this paper, we determine a core subset of dense ideals and left dense ideals of some incidence algebras. As an application and the motivation of this work, we compute the maximal left quotient ring of some incidence algebras. In a ring T, if a min