Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Möller, Tilman"'
Publikováno v:
Discrete & Computational Geometry 72, 73--90 (2024)
A hyperplane arrangement is called formal provided all linear dependencies among the defining forms of the hyperplanes are generated by ones corresponding to intersections of codimension two. The significance of this notion stems from the fact that c
Externí odkaz:
http://arxiv.org/abs/2202.09104
Autor:
Moeller, Tilman
An arrangement of hyperplanes is called formal, if the relations between the hyperplanes are generated by relations in codimension 2. Formality is not a combinatorial property, raising the question for a characterization for combinatorial formality.
Externí odkaz:
http://arxiv.org/abs/1903.11925
Publikováno v:
Topology and Applications vol 249 (2018) 67 - 72
In this note we present examples of $K(\pi,1)$-arrangements which admit a restriction which fails to be $K(\pi,1)$. This shows that asphericity is not hereditary among hyperplane arrangements.
Comment: 6 pages
Comment: 6 pages
Externí odkaz:
http://arxiv.org/abs/1803.03637
In this paper we present a new method for determining optimal designs for enzyme inhibition kinetic models, which are used to model the influence of the concentration of a substrate and an inhibition on the velocity of a reaction. The approach uses a
Externí odkaz:
http://arxiv.org/abs/1709.04952
Autor:
Moeller, Tilman, Roehrle, Gerhard
Solomon showed that the Poincar\'e polynomial of a Coxeter group $W$ satisfies a product decomposition depending on the exponents of $W$. This polynomial coincides with the rank-generating function of the poset of regions of the underlying Coxeter ar
Externí odkaz:
http://arxiv.org/abs/1706.09649
Autor:
Moeller, Tilman, Roehrle, Gerhard
In a recent paper, Hoge and the second author classified all nice and all inductively factored reflection arrangements. In this note we extend this classification by determining all nice and all inductively factored restrictions of reflection arrange
Externí odkaz:
http://arxiv.org/abs/1609.06908
Autor:
Moeller, Tilman, Roehrle, Gerhard
We show that the class of inductively factored arrangements is closed under taking localizations. We illustrate the usefulness of this with an application.
Comment: 7 pages. arXiv admin note: text overlap with arXiv:1402.3227
Comment: 7 pages. arXiv admin note: text overlap with arXiv:1402.3227
Externí odkaz:
http://arxiv.org/abs/1602.06421
Publikováno v:
Discrete & Computational Geometry; Jul2024, Vol. 72 Issue 1, p73-90, 18p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Möller, Tilman Hendrik
Ein Arrangement bezüglich eines endlich-dimensionalen Vektorraums ist eine endliche Menge von Hyperebenen dieses Raumes. Hierbei ist eine Hyperebene ein Unterraum von Kodimension eins. Arrangements lassen sich in natürlicher Weise auf Schnitte von
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1f14c8fad311aa67a953365ecac71889