Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Möbius inversion on posets"'
Autor:
Goh, Marcel K.
We give conditions for a locally finite poset $P$ to have the property that for any functions $f:P\to {\bf C}$ and $g:P\to {\bf C}$ not identically zero and linked by the Möbius inversion formula, the support of at least one of $f$ and $g$ is infini
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9654dd13d3cd521fd707e39ae552c331
Autor:
Marcus Greferath
Publikováno v:
Finite Fields and Their Applications. 8(3):323-331
MacWilliams' equivalence theorem states that Hamming isometries between linear codes extend to monomial transformations of the ambient space. One of the most elegant proofs for this result is due to K. P. Bogart et al. (1978, Inform. and Control37, 1
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
S.E. Schmidt, Marcus Greferath
Publikováno v:
Journal of Combinatorial Theory, Series A. (1):17-28
F. J. MacWilliams proved that Hamming isometries between linear codes extend to monomial transformations. This theorem has recently been genera- lized by J. Wood who proved it for Frobenius rings using character theoretic methods. The present paper p
Autor:
Schwab, Emil1 eschwab@utep.edu
Publikováno v:
Semigroup Forum. Jun2015, Vol. 90 Issue 3, p694-720. 27p.
Autor:
Shah, Parikshit, Parrilo, Pablo
We propose a novel and natural architecture for decentralized control that is applicable whenever the underlying system has the structure of a partially ordered set (poset). This controller architecture is based on the concept of Moebius inversion fo
Externí odkaz:
http://arxiv.org/abs/1111.7221
Autor:
An, Yajun, Edgar, Tom
Publikováno v:
Mathematics Magazine; Oct2018, Vol. 91 Issue 4, p286-287, 2p
Möbius inversion of functions on partially ordered sets (posets) $\mathcal{P}$ is a classical tool in combinatorics. For finite posets it consists of two, mutually inverse, linear transformations called zeta and Möbius transform, respectively. In t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b64f136b437584696bf74ef5815d444f
Publikováno v:
Course in Enumeration; 2007, p179-238, 60p