Zobrazeno 1 - 10
of 142
pro vyhledávání: '"Móri, Tamás F."'
Autor:
Móri, Tamás F., Székely, Gábor J.
In this paper three unrelated problems will be discussed. What connects them is the rich methodology of classical probability theory. In the first two problems we have a complete answer to the problems raised; in the third case, what we call the Hung
Externí odkaz:
http://arxiv.org/abs/2404.10654
Autor:
Móri, Tamás F., Székely, Gábor J.
Since Pearson's correlation was introduced at the end of the 19th century many dependence measures have appeared in the literature. Recently we have suggested four simple axioms for dependence measures of random variables that take values in Hilbert
Externí odkaz:
http://arxiv.org/abs/2009.04313
Autor:
Móri, Tamás F., Rokob, Sándor
Due to the popularity of randomly evolving graph processes, there exists a randomized version of many recursively defined graph models. This is also the case with the cherry tree, which was introduced by Buksz\'ar and Pr\'ekopa to improve Bonferroni
Externí odkaz:
http://arxiv.org/abs/1807.01762
Autor:
Móri, Tamás F., Rokob, Sándor
In this paper, we give sufficient conditions for a Crump-Mode-Jagers process to be bounded in $L_k$ for a given $k>1$. This result is then applied to a recent random graph process motivated by pairwise collaborations and driven by time-dependent bran
Externí odkaz:
http://arxiv.org/abs/1807.00767
Autor:
Móri, Tamás F., Székely, Gábor J.
Publikováno v:
In Stochastic Processes and their Applications August 2022 150:699-715
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Statistical Planning and Inference July 2021 213:1-15
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Backhausz, Ágnes, Móri, Tamás F.
We deal with a random graph model where at each step, a vertex is chosen uniformly at random, and it is either duplicated or its edges are deleted. Duplication has a given probability. We analyse the limit distribution of the degree of a fixed vertex
Externí odkaz:
http://arxiv.org/abs/1409.5279
Autor:
Backhausz, Ágnes, Móri, Tamás F.
We deal with a random graph model evolving in discrete time steps by duplicating and deleting the edges of randomly chosen vertices. We prove the existence of an a.s. asymptotic degree distribution, with streched exponential decay; more precisely, th
Externí odkaz:
http://arxiv.org/abs/1308.1506