Zobrazeno 1 - 10
of 141
pro vyhledávání: '"Mészáros, Tamas"'
Publikováno v:
In International Journal of Biological Macromolecules February 2025 288
Autor:
Barta, Bálint András, Radovits, Tamás, Dobos, Attila Balázs, Tibor Kozma, Gergely, Mészáros, Tamás, Berényi, Petra, Facskó, Réka, Fülöp, Tamás, Merkely, Béla, Szebeni, János
Publikováno v:
In Vaccine: X August 2024 19
Autor:
Mészáros, Tamás, Steiner, Raphael
Given a non-trivial finite Abelian group $(A,+)$, let $n(A) \ge 2$ be the smallest integer such that for every labelling of the arcs of the bidirected complete graph of order $n(A)$ with elements from $A$ there exists a directed cycle for which the s
Externí odkaz:
http://arxiv.org/abs/2103.04359
We study the problem of determining the minimum number $f(n,k,d)$ of affine subspaces of codimension $d$ that are required to cover all points of $\mathbb{F}_2^n\setminus \{\vec{0}\}$ at least $k$ times while covering the origin at most $k-1$ times.
Externí odkaz:
http://arxiv.org/abs/2101.11947
Autor:
Mészáros, Tamás, Steiner, Raphael
The dichromatic number $\vec{\chi}(D)$ of a digraph $D$ is the smallest $k$ for which it admits a $k$-coloring where every color class induces an acyclic subgraph. Inspired by Hadwiger's conjecture for undirected graphs, several groups of authors hav
Externí odkaz:
http://arxiv.org/abs/2101.04590
Alon and Shikhelman initiated the systematic study of the following generalized Tur\'an problem: for fixed graphs $H$ and $F$ and an integer $n$, what is the maximum number of copies of $H$ in an $n$-vertex $F$-free graph? An edge-colored graph is ca
Externí odkaz:
http://arxiv.org/abs/1911.06642
We demonstrate a close connection between the classic planar Singer difference sets and certain norm equation systems arising from projective norm graphs. This, on the one hand leads to a novel description of planar Singer difference sets as a subset
Externí odkaz:
http://arxiv.org/abs/1908.05591
The projective norm graphs $\text{NG}(q,t)$ provide tight constructions for the Tur\'an number of complete bipartite graphs $K_{t,s}$ with $s>(t-1)!$. In this paper we determine their automorphism group and explore their small subgraphs. To this end
Externí odkaz:
http://arxiv.org/abs/1908.05190
Autor:
Mészáros, Tamás
We say that a set system $\mathcal{F}\subseteq 2^{[n]}$ shatters a set $S\subseteq [n]$ if every possible subset of $S$ appears as the intersection of $S$ with some element of $\mathcal{F}$ and we denote by $\text{Sh}(\mathcal{F})$ the family of sets
Externí odkaz:
http://arxiv.org/abs/1908.03045
A well-known result of R\"odl and Ruci\'nski states that for any graph $H$ there exists a constant $C$ such that if $p \geq C n^{- 1/m_2(H)}$, then the random graph $G_{n,p}$ is a.a.s. $H$-Ramsey, that is, any $2$-colouring of its edges contains a mo
Externí odkaz:
http://arxiv.org/abs/1908.02991