Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Mélissa Nothias-Esposito"'
Autor:
Daniel Petras, Aldo Moreno Ulloa, Cristopher A. Boya P., Fernando Vargas, Randy Mojica-Flores, Alan K. Jarmusch, Kunyang Sun, Marcelino Gutiérrez, Kyo Bin Kang, Richard M. Tehan, Mingxun Wang, Robert A. Keyzers, Alexander A. Aksenov, Justin J. J. van der Hooft, Christine M. Aceves, Fidele Tugizimana, Andrew W. Truman, Martin H. Christian, Angela I. Calderón, Javier Andres Tejeda Mora, Johant Lakey-Beitia, Nicole Tayler, Nicole Sikora, Andrés Mauricio Caraballo-Rodríguez, Kelly C. Weldon, Julia M. Gauglitz, Emily C. Gentry, Pieter C. Dorrestein, Yilue Zhang, Nuno Bandeira, Louis-Félix Nothias, Mélissa Nothias-Esposito, Nombuso Ndlovu, Irina Koester, Samuel Bertrand, Allegra T. Aron, Victor Vásquez-Chaves, Robin Schmid, Kerry L. McPhail, Madeleine Ernst, Catherine Roullier, Amina Bouslimani
Publikováno v:
Nature protocols, 15, 1954-1991
Nature protocols 15 (2020)
Nature Protocols
Nature Protocols, Nature Publishing Group, 2020, 15 (6), pp.1954-1991. ⟨10.1038/s41596-020-0317-5⟩
Nature Protocols volume 15, pages1954–1991(2020)
Kérwá
Universidad de Costa Rica
instacron:UCR
Nature protocols 15 (2020)
Nature Protocols
Nature Protocols, Nature Publishing Group, 2020, 15 (6), pp.1954-1991. ⟨10.1038/s41596-020-0317-5⟩
Nature Protocols volume 15, pages1954–1991(2020)
Kérwá
Universidad de Costa Rica
instacron:UCR
Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule–focused tandem mass spectrometry (MS2) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into
Autor:
Robert A. Quinn, Mélissa Nothias-Esposito, Oriane Moyne, Neha Garg, Fernando Vargas, Hiroshi Tsugawa, Zdeněk Kameník, Bindesh Shrestha, Julia M. Gauglitz, Sven W. Meyer, Tam Dang, Pieter C. Dorrestein, Michael Witting, Abinesh Sarvepalli, Madeleine Ernst, Alexey Gurevich, Giorgis Isaac, Nikolas Kessler, Zheng Zhang, Robin Schmid, Marcus Ludwig, Ngoc Hung Nguyen, Johannes Rainer, Mingxun Wang, Theodore Alexandrov, Laura-Isobel McCall, Ivan Protsyuk, Audrey Le Gouellec, Pierre-Marie Allard, Sebastian Böcker, Alan K. Jarmusch, Ricardo Silva, Heiko Neuweger, Irina Koester, Ansgar Korf, Oliver Kohlbacher, Anupriya Tripathi, Daniel Petras, Kai Dührkop, Simon Rogers, Julien Paolini, Alexander A. Aksenov, Markus Fleischauer, Oliver Alka, Fabian Aicheler, Steffen Neumann, Kelly C. Weldon, Louis-Félix Nothias, Mustafa Morsy, Christian Martin H, Hosein Mohimani, Vanessa V. Phelan, Nuno Bandeira, Jonathan McSayles, Xavier Cachet, Justin J. J. van der Hooft, Kyo Bin Kang, Florian Zubeil, Tomáš Pluskal, Aiko Barsch, Heejung Yang, Andrés Mauricio Caraballo-Rodríguez
Publikováno v:
Nature methods, vol 17, iss 9
Nature methods
Nature Methods
Nature Methods, Nature Publishing Group, 2020, 17 (9), pp.905-908. ⟨10.1038/s41592-020-0933-6⟩
Nat. Methods 17, 905–908 (2020)
Nature Methods 17 (2020) 9
Nature Methods, 17(9), 905-908
Nature methods
Nature Methods
Nature Methods, Nature Publishing Group, 2020, 17 (9), pp.905-908. ⟨10.1038/s41592-020-0933-6⟩
Nat. Methods 17, 905–908 (2020)
Nature Methods 17 (2020) 9
Nature Methods, 17(9), 905-908
Feature-based molecular networking allows the generation of molecular networks for mass spectrometry data that can recognize isomers, incorporate relative quantification and integrate ion mobility data.Molecular networking has become a key method to
Autor:
Rodolfo A. Salido, Ashley Shade, Mads Albertsen, Daniel McDonald, Anupriya Tripathi, Rob Knight, Daniel Petras, Kai Dührkop, Se Jin Song, Cameron Martino, Thomas O. Metz, James T. Morton, Mélissa Nothias-Esposito, A. Gonzalez, Louis-Félix Nothias, Justin P. Shaffer, Promi Das, Alexander A. Aksenov, Karenina Sanders, Torsten Thomas, Hyun-Woo Kim, Jeremiah J. Minich, Vásquez-Baeza Y, Tara Schwartz, Smruthi Karthikeyan, Janet K. Jansson, James C. Stegen, Jeff DeReus, Jack A. Gilbert, Søren Michael Karst, Bryant Mm, Sneha P. Couvillion, Sebastian Böcker, Jon G. Sanders, Gail Ackermann, Franck Lejzerowicz, Pieter C. Dorrestein, Qiyun Zhu, Greg Humphrey, Niina Haiminen, Serina Huang, Anna Paola Carrieri, Luke R. Thompson, Laxmi Parida, Clarisse Marotz, Kristen L. Beck, Asker Daniel Brejnrod, Wout Bittremieux, Austin D. Swafford, Holly L. Lutz
As our understanding of the structure and diversity of the microbial world grows, interpreting its function is of critical interest for understanding and managing the many systems microbes influence. Despite advances in sequencing, lack of standardiz
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0b557d6325dcfbe12e382bd698224582
https://doi.org/10.1101/2021.06.04.446988
https://doi.org/10.1101/2021.06.04.446988
Algorithmic Learning for Auto-deconvolution of GC-MS Data to Enable Molecular Networking within GNPS
Autor:
Kelem Gashu, Madeleine Ernst, Mélissa Nothias Esposito, Kirill Veselkov, Michael M. Meijler, Robert A. Quinn, Gaud Dervilly, Audrey Poirier, Katherine N. Maloney, tzhak MizrahiI, Chao Song, Thomas O. Metz, Roman S. Borisov, Rob Knight, Mabel Gonzalez, Roxana Coras, Amina Bouslimani, Chiara Carazzone, Vasilis Vasiliou, Alexander A. Aksenov, Wout Bittremieux, Yann Guitton, Daniel Petras, Zheng Zhang, Larisa N. Kulikova, Robin Schmid, Ilaria Belluomo, James T. Morton, Sneha P. Couvillion, Brooke Anderson, Carrie D. Nicora, Kenneth L. Jones, S. Prévost, Sophie L. F. Doran, Louis-Félix Nothias, Dennis Veselkov, Erika M. Zink, Bruno Le Bizec, Andrea M. Smania, Chris Callewaert, Justin J. J. van der Hooft, Rachel Gregor, Pauline Le Boulch, Alexey V. Melnik, Adolfo Amézquita, Biswapriya B. Misra, Noga Sikron Persi, Mingxun Wang, Raphaël Lugan, Rachel Dutton, Morgan Panitchpakdi, Pieter C. Dorrestein, Meagan C. Burnet, Elizabeth Humston Fulmer, Ivan Laponogov, George B. Hanna, Viatcheslav B. Artaev, Kathleen Dorrestein, Aaron Fait, Andrea Georgina Albarracín Orio, Stav Eyal
Publikováno v:
bioRxiv
Gas chromatography-mass spectrometry (GC-MS) represents an analytical technique with significant practical societal impact. Spectral deconvolution is an essential step for interpreting GC-MS data. No public GC-MS repositories that also enable reposit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::178962b4d09dd2517983d7aea490ebf6
https://hal.archives-ouvertes.fr/hal-03173091
https://hal.archives-ouvertes.fr/hal-03173091
Autor:
Ilaria Belluomo, Morgan Panitchpakdi, Aleksandr Smirnov, Mélissa Nothias-Esposito, Alexey V. Melnik, Gaud Dervilly, Rachel J. Dutton, Adolfo Amézquita, Vasilis Vasiliou, Zheng Zhang, Daniel Petras, Carrie D. Nicora, Audrey Poirier, James T. Morton, Ivan Laponogov, George B. Hanna, Sneha P. Couvillion, Biswapriya B. Misra, Robin Schmid, Wout Bittremieux, Raphaël Lugan, Brooke A. Anderson, Yann Guitton, Chris Callewaert, Kenneth L. Jones, Robert A. Quinn, Rob Knight, Larisa N. Kulikova, Itzhak Mizrahi, Erika M. Zink, Mabel Gonzalez, Sophie L. F. Doran, Rachel Gregor, Pauline Le Boulch, Kelem Gashu, Xiuxia Du, Michael M. Meijler, Kirill Veselkov, Chao Song, Elizabeth Humston-Fulmer, Noga Sikron Persi, Justin J. J. van der Hooft, Dennis Veselkov, Monica Guma, Kathleen Dorrestein, Saleh Alseekh, Roxana Coras, Chiara Carazzone, Thomas O. Metz, Aaron Fait, Andrea Georgina Albarracín Orio, Alexander A. Aksenov, Jose U. Scher, Andrea M. Smania, Bruno Le Bizec, Stav Eyal, Dinesh Kumar Barupal, Pieter C. Dorrestein, Alisdair R. Fernie, Reza Mirnezami, S. Prévost, Louis-Félix Nothias, Meagan C. Burnet, Viatcheslav B. Artaev, Mingxun Wang, Katherine N. Maloney, Julia Manasson, Madeleine Ernst, Roman S. Borisov, Amina Bouslimani
Publikováno v:
Nat Biotechnol
Nature biotechnology
Aksenov, Alexander A., Laponogov, Ivan, Zhang, Zheng, Doran, Sophie L. F., Belluomo, Ilaria, Veselkov, Dennis, Bittremieux, Wout, Nothias, Louis Felix, Nothias-Esposito, Mélissa, Maloney, Katherine N., Misra, Biswapriya B., Melnik, Alexey V., Smirnov, Aleksandr, Du, Xiuxia, Jones, Kenneth L., Dorrestein, Kathleen, Panitchpakdi, Morgan, Ernst, Madeleine, van der Hooft, Justin J. J., Gonzalez, Mabel, Carazzone, Chiara, Amézquita, Adolfo, Callewaert, Chris, Morton, James T., Quinn, Robert A., Bouslimani, Amina, Orio, Andrea Albarracín, Petras, Daniel, Smania, Andrea M., Couvillion, Sneha P., Burnet, Meagan C., Nicora, Carrie D., Zink, Erika, Metz, Thomas O., Artaev, Viatcheslav, Humston-Fulmer, Elizabeth, Gregor, Rachel, Meijler, Michael M., Mizrahi, Itzhak, Eyal, Stav, Anderson, Brooke, Dutton, Rachel, Lugan, Raphaël, Boulch, Pauline Le, Guitton, Yann, Prevost, Stephanie, Poirier, Audrey, Dervilly, Gaud, Le Bizec, Bruno, Fait, Aaron, Persi, Noga Sikron, Song, Chao, Gashu, Kelem, Coras, Roxana, Guma, Monica, Manasson, Julia, Scher, Jose U., Barupal, Dinesh Kumar, Alseekh, Saleh, Fernie, Alisdair R., Mirnezami, Reza, Vasiliou, Vasilis, Schmid, Robin, Borisov, Roman S., Kulikova, Larisa N., Knight, Rob, Wang, Mingxun, Hanna, George B., Dorrestein, Pieter C. and Veselkov, Kirill (2021) Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nature Biotechnology, 39 (2). ISSN 1087-0156
Nature Biotechnology
Nature Biotechnology, 39(2), 169-173
Nature Biotechnology, Nature Publishing Group, 2021, 39 (2), pp.169-173. ⟨10.1038/s41587-020-0700-3⟩
Nature Biotechnology 39 (2021) 2
Nature biotechnology, vol 39, iss 2
Nature biotechnology
Aksenov, Alexander A., Laponogov, Ivan, Zhang, Zheng, Doran, Sophie L. F., Belluomo, Ilaria, Veselkov, Dennis, Bittremieux, Wout, Nothias, Louis Felix, Nothias-Esposito, Mélissa, Maloney, Katherine N., Misra, Biswapriya B., Melnik, Alexey V., Smirnov, Aleksandr, Du, Xiuxia, Jones, Kenneth L., Dorrestein, Kathleen, Panitchpakdi, Morgan, Ernst, Madeleine, van der Hooft, Justin J. J., Gonzalez, Mabel, Carazzone, Chiara, Amézquita, Adolfo, Callewaert, Chris, Morton, James T., Quinn, Robert A., Bouslimani, Amina, Orio, Andrea Albarracín, Petras, Daniel, Smania, Andrea M., Couvillion, Sneha P., Burnet, Meagan C., Nicora, Carrie D., Zink, Erika, Metz, Thomas O., Artaev, Viatcheslav, Humston-Fulmer, Elizabeth, Gregor, Rachel, Meijler, Michael M., Mizrahi, Itzhak, Eyal, Stav, Anderson, Brooke, Dutton, Rachel, Lugan, Raphaël, Boulch, Pauline Le, Guitton, Yann, Prevost, Stephanie, Poirier, Audrey, Dervilly, Gaud, Le Bizec, Bruno, Fait, Aaron, Persi, Noga Sikron, Song, Chao, Gashu, Kelem, Coras, Roxana, Guma, Monica, Manasson, Julia, Scher, Jose U., Barupal, Dinesh Kumar, Alseekh, Saleh, Fernie, Alisdair R., Mirnezami, Reza, Vasiliou, Vasilis, Schmid, Robin, Borisov, Roman S., Kulikova, Larisa N., Knight, Rob, Wang, Mingxun, Hanna, George B., Dorrestein, Pieter C. and Veselkov, Kirill (2021) Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nature Biotechnology, 39 (2). ISSN 1087-0156
Nature Biotechnology
Nature Biotechnology, 39(2), 169-173
Nature Biotechnology, Nature Publishing Group, 2021, 39 (2), pp.169-173. ⟨10.1038/s41587-020-0700-3⟩
Nature Biotechnology 39 (2021) 2
Nature biotechnology, vol 39, iss 2
We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography–mass spectrometry (GC–MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e1ff89483759269c68c13571b23db181
http://hdl.handle.net/10044/1/84598
http://hdl.handle.net/10044/1/84598
Autor:
Yannick Hövelmann, Tomáš Pluskal, Matthew A. Pendergraft, Fernando Vargas, Kelly C. Weldon, Mélissa Nothias-Esposito, Irina Koester, Daniel Petras, Manuela Raffatellu, Mar Garcia-Aloy, Mingxun Wang, Gajender Aleti, Florian Hübner, Andrés Mauricio Caraballo-Rodríguez, Andrea Georgina Albarracín Orio, Hiroshi Tsugawa, Helena Mannochio Russo, Heiko Hayen, Julia M. Gauglitz, Richard M. Tehan, Hui Zhi, Grundmann Co, Johannes Rainer, Alan K. Jarmusch, Louis-Félix Nothias, Zdeněk Kameník, Birgit Arndt, Hans-Ulrich Humpf, Alexander A. Aksenov, Anelize Bauermeister, Morgan Panitchpakdi, Le Gouellec A, Uwe Karst, Allegra T. Aron, Emily C. Gentry, Svetlana A. Kalinina, Pieter C. Dorrestein, Kimberly A. Prather, Sebastian Böcker, Ansgar Korf, Robin Schmid, Kerry L. McPhail, Annika Jagels, Lihini I. Aluwihare, Kai Dührkop
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Molecular networking connects tandem mass spectra of molecules based on the similarity of their fragmentation patterns. However, during ionization, molecules commonly form multiple ion species with different fragmentation behavior. To connect ion spe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b8a4a76a8fb82aafbd54467a95ae44ba
https://www.nature.com/articles/s41467-021-23953-9
https://www.nature.com/articles/s41467-021-23953-9
Autor:
Julia M. Gauglitz, Louis-Félix Nothias, Yoshiki Vázquez-Baeza, Pieter C. Dorrestein, Anupriya Tripathi, Mingxun Wang, Mélissa Nothias-Esposito, Asker Daniel Brejnrod, Jo Handelsman, Daniel McDonald, Deepa D. Acharya, Marcus Ludwig, Justin J. J. van der Hooft, Sebastian Böcker, Madeleine Ernst, Kai Dührkop, Markus Fleischauer, Qiyun Zhu, Antonio Gonzalez, Rob Knight
Publikováno v:
Nat Chem Biol
Nature Chemical Biology, 17, 146-151
Nature chemical biology, vol 17, iss 2
Nature Chemical Biology 17 (2021)
Nature Chemical Biology, 17, 146-151
Nature chemical biology, vol 17, iss 2
Nature Chemical Biology 17 (2021)
Untargeted mass spectrometry is employed to detect small molecules in complex biospecimens, generating data that are difficult to interpret. We developed Qemistree, a data exploration strategy based on the hierarchical organization of molecular finge
Autor:
Zdenek Kamenik, Alexey V. Melnik, Robert A. Quinn, Aileen Lu, Rohit S. Advani, Rama Chaar, Laura-Isobel McCall, Kerry L. McPhail, Ngoc Hung Nguyen, Alexander A. Aksenov, Emily C. Gentry, Pieter C. Dorrestein, Yessica Alejandra Montoya Giraldo, Makhai Husband, Rob Knight, Sanjana Bolleddu, Morgan Panitchpakdi, Julia M. Gauglitz, Nicole Sikora, Fernando Vargas, Shaden Aguirre, Mélissa Nothias-Esposito, Allegra T. Aron, Andrés M. C. Rodríguez, Emmanuel O. Elijah, Anelize Bauermeister, Nuno Bandeira, Audrey Le Gouellec, Gajender Aleti, Scott A. Jarmusch, Madeleine Ernst, Justin J. J. van der Hooft, Christine M. Aceves, Michael J. Meehan, Amina Bouslimani, Alison Vrbanac, Mingxun Wang, Kelly C. Weldon, Louis-Félix Nothias, Alan K. Jarmusch, Kenneth L. Jones, Riya Christina Menezes, Roxana Coras, Daniel Petras
Publikováno v:
Nature Methods 17 (2020) 9
Nature methods, vol 17, iss 9
Nat Methods
Nature Methods, 17(9), 901-904
Nature Methods
Nature Methods, Nature Publishing Group, 2020, 17 (9), pp.901-904. ⟨10.1038/s41592-020-0916-7⟩
Nature methods, vol 17, iss 9
Nat Methods
Nature Methods, 17(9), 901-904
Nature Methods
Nature Methods, Nature Publishing Group, 2020, 17 (9), pp.901-904. ⟨10.1038/s41592-020-0916-7⟩
We present ReDU ( https://redu.ucsd.edu/ ), a system for metadata capture of public mass spectrometry-based metabolomics data, with validated controlled vocabularies. Systematic capture of knowledge enables the reanalysis of public data and/or co-ana
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8b3a40145d264ae0cca7f39f9823fb1c
https://research.wur.nl/en/publications/redu-a-framework-to-find-and-reanalyze-public-mass-spectrometry-d
https://research.wur.nl/en/publications/redu-a-framework-to-find-and-reanalyze-public-mass-spectrometry-d
Autor:
Pieter Leyssen, Zheng Zhang, Fanny Roussi, Julien Paolini, Marc Litaudon, Mélissa Nothias-Esposito, David Touboul, Pascal Retailleau, Pieter C. Dorrestein, Ricardo Silva, Louis-Félix Nothias
Publikováno v:
Journal of Natural Products
Journal of Natural Products, American Chemical Society, 2019, ⟨10.1021/acs.jnatprod.8b00916⟩
Journal of Natural Products, American Chemical Society, 2019, ⟨10.1021/acs.jnatprod.8b00916⟩
The species Euphorbia pithyusa and Euphorbia cupanii are two closely related Mediterranean spurges for which their taxonomic relationships are still being debated. Herein, the diterpene ester content of E. cupanii was investigated using liquid chroma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d54bc408f49a12fd13f8e90783687de1
https://hal.archives-ouvertes.fr/hal-02159546
https://hal.archives-ouvertes.fr/hal-02159546
Autor:
Marc Litaudon, Zheng Zhang, Mélissa Nothias-Esposito, Pieter C. Dorrestein, Abi Sarvepalli, Ricardo Silva, Pieter Leyssen, Louis-Félix Nothias, Theodore Alexandrov, Jean Costa, Mingxun Wang, Ivan Protsyuk, David Touboul, Julien Paolini
Publikováno v:
Journal of Natural Products
It is a common problem in natural product therapeutic lead discovery programs that despite good bioassay results in the initial extract, the active compound(s) may not be isolated during subsequent bioassay-guided purification. Herein, we present the