Zobrazeno 1 - 10
of 2 116
pro vyhledávání: '"MÜLLER, KATHARINA"'
Autor:
Kundu, Debanjana, Müller, Katharina
In this article, we study questions pertaining to ramified $\mathbb{Z}_p^d$-extensions of a finite connected graph $X$. We also study the Iwasawa theory of dual graphs.
Externí odkaz:
http://arxiv.org/abs/2410.11704
Autor:
Müller, Katharina, Ray, Anwesh
Let $E_{/\mathbb{Q}}$ be an elliptic curve and $p$ an odd prime such that $E$ has good ordinary reduction at $p$ and the Galois representation on $E[p]$ is irreducible. Then Greenberg's $\mu=0$ conjecture predicts that the Selmer group of $E$ over th
Externí odkaz:
http://arxiv.org/abs/2409.15056
Autor:
Forrás, Ben, Müller, Katharina
Let $E/\mathbb{Q}$ be an elliptic curve and let $p\ge 5$ be a prime of good supersingular reduction. We generalize results due to Meng Fai Lim proving Kida's formula and integrality results for characteristic elements of signed Selmer groups along th
Externí odkaz:
http://arxiv.org/abs/2407.08430
Autor:
Müller, Katharina, Ray, Anwesh
Via a novel application of Iwasawa theory, we study Hilbert's tenth problem for number fields occurring in $\mathbb{Z}_p$-towers of imaginary quadratic fields $K$. For a odd prime $p$, the lines $(a,b) \in \mathbb{P}^1(\mathbb{Z}_p)$ are identified w
Externí odkaz:
http://arxiv.org/abs/2406.01443
Autor:
Lei, Antonio, Müller, Katharina
Let $p,q,l$ be three distinct prime numbers and let $N$ be a positive integer coprime to $pql$. For an integer $n\ge 0$, we define the directed graph $X_l^q(p^nN)$ whose vertices are given by isomorphism classes of elliptic curves over a finite field
Externí odkaz:
http://arxiv.org/abs/2309.00524
Autor:
Kleine, Sören, Müller, Katharina
Let $p$ be a rational prime, and let $X$ be a connected finite graph. In this article we study voltage covers $X_\infty$ of $X$ attached to a voltage assignment ${\alpha}$ which takes values in some uniform $p$-adic Lie group $G$. We formulate and pr
Externí odkaz:
http://arxiv.org/abs/2307.15395
Autor:
Lei, Antonio, Müller, Katharina
Let $p$ and $q$ be distinct prime numbers, with $q\equiv 1\pmod{12}$. Let $N$ be a positive integer that is coprime to $pq$. We prove a formula relating the Hasse--Weil zeta function of the modular curve $X_0(qN)_{\mathbb{F}_q}$ to the Ihara zeta fun
Externí odkaz:
http://arxiv.org/abs/2307.01001