Zobrazeno 1 - 10
of 295
pro vyhledávání: '"Lyubetsky, Vassily"'
Autor:
Kanovei, Vladimir, Lyubetsky, Vassily
We make use of generalized iterations of Jensen forcing to define a cardinal-preserving generic model of ZF for any $n\ge 1$ and each of the following four Choice hypotheses: (1) $\text{DC}(\mathbf\Pi^1_n)\land\neg\text{AC}_\omega(\varPi^1_{n+1})\,;$
Externí odkaz:
http://arxiv.org/abs/2407.20098
Autor:
Kanovei, Vladimir, Lyubetsky, Vassily
The parameter-free part $\text{PA}_2^\ast$ of $\text{PA}_2$, the 2nd order Peano arithmetic, is considered. We make use of a product/iterated Sacks forcing to define an $\omega$-model of $\text{PA}_2^\ast + \text{CA}(\Sigma^1_2)$, in which an example
Externí odkaz:
http://arxiv.org/abs/2209.07599
Autor:
Kanovei, Vladimir, Lyubetsky, Vassily
Publikováno v:
Axioms 2022, 11, no. 3, article no. 122
In this paper, we prove the following: If $n\ge3$, there is a generic extension of $L$ -- the constructible universe -- in which it is true that the Separation principle holds for both effective (lightface) classes $\varSigma^1_n$ and $\varPi^1_n$ fo
Externí odkaz:
http://arxiv.org/abs/2204.03915
Autor:
Kanovei, Vladimir, Lyubetsky, Vassily
A set is nontypical in the Russell sense, if it belongs to a countable ordinal definable set. The class HNT of all hereditarily nontypical sets satisfies all axioms of ZF and the double inclusion HOD $\subseteq$ HNT $\subseteq$ V holds. Solving a pro
Externí odkaz:
http://arxiv.org/abs/2111.13491
Autor:
Kanovei, Vladimir, Lyubetsky, Vassily
By Tzouvaras, a set is nontypical in the Russell sense, if it belongs to a countable ordinal definable set. The class HNT of all hereditarily nontypical sets satisfies all axioms of ZF and the double inclusion HOD$\subseteq$HNT$\subseteq$V holds. Sev
Externí odkaz:
http://arxiv.org/abs/2111.07654
Autor:
Kanovei, Vladimir, Lyubetsky, Vassily
Publikováno v:
In Annals of Pure and Applied Logic June 2024 175(6)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kanovei, Vladimir, Lyubetsky, Vassily
Using an invariant modification of Jensen's "minimal $\varPi^1_2$ singleton" forcing, we define a model of ZFC, in which, for a given $n\ge2$, there exists a lightface $\varPi^1_n$ unordered pair of non-OD (hence, OD-indiscernible) countable sets of
Externí odkaz:
http://arxiv.org/abs/1912.12962
Autor:
Kanovei, Vladimir, Lyubetsky, Vassily
We make use of a finite support product of the Jensen minimal forcing to define a model of set theory in which the separation theorem fails for projective classes $\mathbf\Sigma^1_n$ and $\mathbf\Pi^1_n$, for a given $n\ge3$.
Comment: arXiv admi
Comment: arXiv admi
Externí odkaz:
http://arxiv.org/abs/1905.11241
Autor:
Gorbunov, Konstantin1 (AUTHOR) gorbunov@iitp.ru, Lyubetsky, Vassily1 (AUTHOR)
Publikováno v:
Mathematics (2227-7390). Mar2024, Vol. 12 Issue 6, p817. 26p.