Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Lys Sanz Moreta"'
Autor:
Rute R. da Fonseca, Lys Sanz Moreta
Publikováno v:
Evolutionary Biology. 47:240-245
The visualization of the molecular context of an amino acid mutation in a protein structure is crucial for the assessment of its functional impact and to understand its evolutionary implications. Currently, searches for fast evolving amino acid posit
Autor:
William Bullock, Douglas L. Theobald, Lys Sanz Moreta, Andreas Manoukian, Ahmad Salim Al-Sibahi, Thomas Hamelryck, Basile Nicolas Rommes
Publikováno v:
CIBCB
Proceedings of the ... IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology : CIBCB. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology
Proceedings of the ... IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology : CIBCB. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology
Optimal superposition of protein structures is crucial for understanding their structure, function, dynamics and evolution. We investigate the use of probabilistic programming to superimpose protein structures guided by a Bayesian model. Our model TH
Publikováno v:
BIBE
Optimally superimposing protein structures is essential to study their structure, function, dynamics and evolution. We present THESEUS NUTS (No U-Turn Sampler), a Bayesian version of the THESEUS model [1] –[3] which relies on maximum likelihood est
Autor:
Rute R. da Fonseca, Lys Sanz Moreta
The visualization of the molecular context of an amino acid mutation in a protein structure is crucial for the assessment of its functional impact and to understand its evolutionary implications. Currently, searches for fast evolving amino acid posit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::719597e23cb2b4ae4c9a7e3f4d54ea15
https://doi.org/10.1101/380394
https://doi.org/10.1101/380394
Autor:
Anders Bundgård Sørensen, Christian S. Steenmanns, Lys Sanz Moreta, Christian B. Thygesen, Thomas Hamelryck, Ahmad Salim Al-Sibahi
Publikováno v:
University of Copenhagen
Thygesen, C B, Al-Sibahi, A S, Steenmanns, C S, Sanz Moreta, L, Sørensen, A B & Hamelryck, T W 2021, Efficient Generative Modelling of Protein Structure Fragments using a Deep Markov Model . in International Conference on Machine Learning, 18-24 July 2021, Virtual . PMLR, Proceedings of Machine Learning Research, vol. 139, pp. 10258-10267, 38th International Conference on Machine Learning, 18/07/2021 . < https://proceedings.mlr.press/v139/thygesen21a.html >
Thygesen, C B, Al-Sibahi, A S, Steenmanns, C S, Sanz Moreta, L, Sørensen, A B & Hamelryck, T W 2021, Efficient Generative Modelling of Protein Structure Fragments using a Deep Markov Model . in International Conference on Machine Learning, 18-24 July 2021, Virtual . PMLR, Proceedings of Machine Learning Research, vol. 139, pp. 10258-10267, 38th International Conference on Machine Learning, 18/07/2021 . < https://proceedings.mlr.press/v139/thygesen21a.html >
Fragment libraries are often used in protein structure prediction, simulation and design as a means to significantly reduce the vast conformational search space. Current state-of-the-art methods for fragment library generation do not properly account
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f92320426b7f08ca592d192186f8c42e
https://curis.ku.dk/portal/en/publications/efficient-generative-modelling-of-protein-structure-fragments-using-a-deep-markov-model(8a5efeb8-a3bf-48a3-bd47-1577e4464536).html
https://curis.ku.dk/portal/en/publications/efficient-generative-modelling-of-protein-structure-fragments-using-a-deep-markov-model(8a5efeb8-a3bf-48a3-bd47-1577e4464536).html