Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Lynne H. Walling"'
Autor:
Lynne H. Walling, Dan Fretwell
Publikováno v:
International Journal of Number Theory. 17:1965-1996
We consider the action of Hecke-type operators on Hilbert–Siegel theta series attached to lattices of even rank. We show that the average Hilbert–Siegel theta series are eigenforms for these operators, and we explicitly compute the eigenvalues.
Publikováno v:
American Mathematical Society, 732, 2019, Contemporary Mathematics, ⟨10.1090/conm/732/14812⟩
Contemporary Mathematics ISBN: 9781470435257
Contemporary Mathematics ISBN: 9781470435257
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::43e96169d2482819180e6de109459915
https://hal.science/hal-03609686
https://hal.science/hal-03609686
Autor:
Lynne H. Walling
Publikováno v:
Number Theory with an Emphasis on the Markoff Spectrum
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4dcf7cc51db57052f8c170bb1c5c072f
https://doi.org/10.1201/9780203747018-27
https://doi.org/10.1201/9780203747018-27
Autor:
Lynne H. Walling
Publikováno v:
Walling, L H 2017, ' Hecke eigenvalues and relations for Siegel Eisenstein series of arbitrary degree, level, and character ', International Journal of Number Theory, vol. 13, no. 2, pp. 325-370 . https://doi.org/10.1142/S179304211750021X
We evaluate the action of Hecke operators on Siegel Eisenstein series of arbitrary degree, level and character. For square-free level, we simultaneously diagonalise the space with respect to all the Hecke operators, computing the eigenvalues explicit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::238432336bd16000b3d8af50670bf0b9
https://research-information.bris.ac.uk/ws/files/68564349/hecke_eis_deg_n.pdf
https://research-information.bris.ac.uk/ws/files/68564349/hecke_eis_deg_n.pdf
Autor:
Lynne H. Walling
Publikováno v:
Walling, L H 2018, ' Explicitly realizing average Siegel theta series as linear combinations of Eisenstein series ', Ramanujan Journal . https://doi.org/10.1007/s11139-017-9973-7
We find nice representatives for the 0-dimensional cusps of the degree n Siegel upper half-space under the action of $$\Gamma _0(\mathcal N )$$ . To each of these, we attach a Siegel Eisenstein series, and then we make explicit a result of Siegel, re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dcdbabef5127a697da484226426d795c
Autor:
Lynne H. Walling
Publikováno v:
Journal of Number Theory. 133:1608-1644
We introduce an alternate set of generators for the Hecke algebra, and give an explicit formula for the action of these operators on Fourier coefficients. Using this, we compute the eigenvalues of Hecke operators acting on average Siegel theta series
Autor:
Lynne H. Walling
Publikováno v:
Walling, L 2017, ' Some relations on Fourier coefficients of degree 2 Siegel forms of arbitrary level ', Journal of Number Theory . https://doi.org/10.1016/j.jnt.2017.04.003
We extend some recent work of D. McCarthy, proving relations among some Fourier coefficients of a degree 2 Siegel modular form F with arbitrary level and character, provided there are some primes p so that F is an eigenform for the Hecke operators T(
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::39954d1e092ab447ca00f35978675599
http://arxiv.org/abs/1608.00158
http://arxiv.org/abs/1608.00158
Autor:
Lynne H. Walling
Publikováno v:
Walling, L 2017, ' Hecke operators on half-integral weight Siegel Eisenstein series ', International Journal of Number Theory, vol. 13, no. 9, pp. 2335-2372 . https://doi.org/10.1142/S1793042117501287
We construct a basis for the space of half-integral weight Siegel Eisenstein series of level [Formula: see text] where [Formula: see text] is odd and square-free. Then we restrict our attention to those Eisenstein series generated from elements of [F
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d910e6148d513184b671c5e6b6f28510
Autor:
Lynne H. Walling
Publikováno v:
Journal of Number Theory. 129:1709-1733
We compute the action of Hecke operators TjJ(p2) on Jacobi forms of “Siegel degree” n and m×m index M, provided 1⩽j⩽n−m. We find they are restrictions of Hecke operators on Siegel modular forms, and we compute their action on Fourier coeff