Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Lynn Schmittwilken"'
Publikováno v:
PLoS Computational Biology, Vol 16, Iss 7, p e1008017 (2020)
Classically, visual processing is described as a cascade of local feedforward computations. Feedforward Convolutional Neural Networks (ffCNNs) have shown how powerful such models can be. However, using visual crowding as a well-controlled challenge,
Externí odkaz:
https://doaj.org/article/e1153922e55d44b68c7e24339459fdb3
Autor:
ANANTHA KRISHNAN, Cansu Malak, Paul George Lovell, Andrew J. Schofield, Cheng Qian, Ichasus Llamas-Cornejo, Ioan Smart, Hannah Grace Jones, Cehao Yu, Gabriele Pesimena, Fatma KILIC, Lynn Schmittwilken, Lukas Recker, Michele Di Ponzio, Andrew Bayliss, Allie Hexley, Sonia Malvica, Federico Gabriele Segala, Vilma Pullinen
Publikováno v:
Perception. 50:1-244
Autor:
Lynn Schmittwilken, Marianne Maertens
Publikováno v:
Journal of vision. 22(8)
Human vision relies on mechanisms that respond to luminance edges in space and time. Most edge models use orientation-selective mechanisms on multiple spatial scales and operate on static inputs assuming that edge processing occurs within a single fi
Autor:
Lynn Schmittwilken, Marianne Maertens
Publikováno v:
Journal of Vision. 21:1972
Autor:
Adrien Doerig, Gregory Francis, Lynn Schmittwilken, Alban Bornet, Michael H. Herzog, Ben Lonnqvist
Publikováno v:
Journal of Vision, 21, 9, pp. 2039
Journal of Vision, 21, 2039
Journal of Vision, 21, 2039
Item does not contain fulltext Are (feedforward) convolutional neural networks (CNNs) good models for the human visual system? Here, we used visual crowding as a well-controlled psychophysical test to probe CNNs. Visual crowding is a ubiquitous break
Publikováno v:
Journal of Vision. 21:2547
Publikováno v:
2019 Conference on Cognitive Computational Neuroscience.