Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Luzhe Huang"'
Publikováno v:
Light: Science & Applications, Vol 13, Iss 1, Pp 1-13 (2024)
Abstract In recent years, the integration of deep learning techniques with biophotonic setups has opened new horizons in bioimaging. A compelling trend in this field involves deliberately compromising certain measurement metrics to engineer better bi
Externí odkaz:
https://doaj.org/article/20ba9b64d6124e50b6933eef4f7af672
Autor:
Yuzhu Li, Nir Pillar, Jingxi Li, Tairan Liu, Di Wu, Songyu Sun, Guangdong Ma, Kevin de Haan, Luzhe Huang, Yijie Zhang, Sepehr Hamidi, Anatoly Urisman, Tal Keidar Haran, William Dean Wallace, Jonathan E. Zuckerman, Aydogan Ozcan
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-17 (2024)
Abstract Traditional histochemical staining of post-mortem samples often confronts inferior staining quality due to autolysis caused by delayed fixation of cadaver tissue, and such chemical staining procedures covering large tissue areas demand subst
Externí odkaz:
https://doaj.org/article/e629233208ca4c589824c397bea9a0fb
Publikováno v:
Light: Science & Applications, Vol 11, Iss 1, Pp 1-10 (2022)
A deep learning framework, termed Fourier Imager Network (FIN), performs end-to-end phase recovery and image reconstruction from raw holograms, achieving unprecedented success in generalization to new types of samples.
Externí odkaz:
https://doaj.org/article/b9587f5cdd86483795a5247ecb40ad9c
Publikováno v:
Intelligent Computing, Vol 2 (2023)
Uncertainty estimation is critical for numerous deep neural network (DNN) applications and has drawn increasing attention from researchers. In this study, we demonstrated an uncertainty quantification approach for DNNs used in inverse problems based
Externí odkaz:
https://doaj.org/article/61145aaa4bbb4fad8e517824c01bf48a
Publikováno v:
APL Photonics, Vol 7, Iss 7, Pp 070801-070801-8 (2022)
Deep learning-based methods in computational microscopy have been shown to be powerful but, in general, face some challenges due to limited generalization to new types of samples and requirements for large and diverse training data. Here, we demonstr
Externí odkaz:
https://doaj.org/article/dc5fc47d65034873804c85efa709cc62
Publikováno v:
Light: Science & Applications, Vol 10, Iss 1, Pp 1-16 (2021)
Abstract Volumetric imaging of samples using fluorescence microscopy plays an important role in various fields including physical, medical and life sciences. Here we report a deep learning-based volumetric image inference framework that uses 2D image
Externí odkaz:
https://doaj.org/article/f585a564349945d89c774c1bff3ac28a
Virtual Staining of Defocused Autofluorescence Images of Unlabeled Tissue Using Deep Neural Networks
Autor:
Yijie Zhang, Luzhe Huang, Tairan Liu, Keyi Cheng, Kevin de Haan, Yuzhu Li, Bijie Bai, Aydogan Ozcan
Publikováno v:
Intelligent Computing, Vol 2022 (2022)
Deep learning-based virtual staining was developed to introduce image contrast to label-free tissue sections, digitally matching the histological staining, which is time-consuming, labor-intensive, and destructive to tissue. Standard virtual staining
Externí odkaz:
https://doaj.org/article/9711502b292f42e89e4e52c8598b96a1
Autor:
Yayao Ma, Jongchan Park, Luzhe Huang, Chandani Sen, Burri, Samuel, Bruschini, Claudio, Xilin Yang, Qi Cui, Cameron, Robert B., Fishbein, Gregory A., Gomperts, Brigitte N., Ozcan, Aydogan, Charbon, Edoardo, Liang Gao
Publikováno v:
Proceedings of the National Academy of Sciences of the United States of America; 10/1/2024, Vol. 121 Issue 40, p1-37, 49p
Autor:
Liang Gao, Yayao Ma, Luzhe Huang, Chandani Sen, Samuel Burri, Claudio Bruschini, Xilin Yang, Robert Cameron, Gregory Fishbein, Brigitte Gomperts, Aydogan Ozcan, Edoardo Charbon
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging technique that enables the visualization of biological samples at the molecular level by measuring the fluorescence decay rate of fluorescent probes. This provides critical informa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6854d6fa31e1365e2d0ae47d5ffdcf2a
https://doi.org/10.21203/rs.3.rs-2883279/v1
https://doi.org/10.21203/rs.3.rs-2883279/v1
Publikováno v:
Quantitative Phase Imaging IX.