Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Luyan Cao"'
Autor:
Ottilie von Loeffelholz, Andrew Purkiss, Luyan Cao, Svend Kjaer, Naoko Kogata, Guillaume Romet-Lemonne, Michael Way, Carolyn A. Moores
Publikováno v:
Biology Open, Vol 9, Iss 7 (2020)
The Arp2/3 complex regulates many cellular processes by stimulating formation of branched actin filament networks. Because three of its seven subunits exist as two different isoforms, mammals produce a family of Arp2/3 complexes with different proper
Externí odkaz:
https://doaj.org/article/e3a5351a63774cd4a7fa65a6cd8629a2
Autor:
Luyan Cao, Mikael Kerleau, Emiko L. Suzuki, Hugo Wioland, Sandy Jouet, Berengere Guichard, Martin Lenz, Guillaume Romet-Lemonne, Antoine Jegou
Publikováno v:
eLife, Vol 7 (2018)
Formins are major regulators of actin networks. They enhance actin filament dynamics by remaining processively bound to filament barbed ends. How biochemical and mechanical factors affect formin processivity are open questions. Monitoring individual
Externí odkaz:
https://doaj.org/article/9c13e5e16b18474eb04a1410d01e1d9b
Autor:
LuYan Cao, Way, Michael
Publikováno v:
Biochemical Society Transactions; Feb2024, Vol. 52 Issue 1, p343-352, 10p
Publikováno v:
Biophysical Journal. 122:166a-167a
Activation of the Arp2/3 complex by VCA-domain-bearing NPFs results in the formation of ‘daughter’ actin filaments branching off the sides of pre-existing ‘mother filaments.’ Alternatively, when stimulated by SPIN90, Arp2/3 directly nucleates
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c38bedf267cf5f449f1667f4afe8777c
https://doi.org/10.1101/2022.05.06.490861
https://doi.org/10.1101/2022.05.06.490861
Autor:
Frédéric Saudou, Emmanuel Derivery, Ksenia Oguievetskaia, Andrew P. Carter, Maria-Victoria Hinckelmann, Nathalie Rocques, Christophe Le Clainche, Guillaume Romet-Lemonne, Véronique Henriot, Nicolas Molinie, Artem I. Fokin, Alexis Gautreau, Violaine David, Luyan Cao, Magali Aumont-Nicaise, Caroline E. Stone
Publikováno v:
Science Advances
Science Advances, 2021, 7 (3), ⟨10.1126/sciadv.abd5956⟩
Science Advances, American Association for the Advancement of Science (AAAS), 2021, ⟨10.1126/sciadv.abd5956⟩
Science Advances, 2021, ⟨10.1126/sciadv.abd5956⟩
Science Advances, 2021, 7 (3), ⟨10.1126/sciadv.abd5956⟩
Science Advances, American Association for the Advancement of Science (AAAS), 2021, ⟨10.1126/sciadv.abd5956⟩
Science Advances, 2021, ⟨10.1126/sciadv.abd5956⟩
Dendritic actin networks grow in an autocatalytic manner starting from the uncapped minifilament of dynactin.
Dendritic actin networks develop from a first actin filament through branching by the Arp2/3 complex. At the surface of endosomes, the
Dendritic actin networks develop from a first actin filament through branching by the Arp2/3 complex. At the surface of endosomes, the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cbef2378d039c255eb0c8c4302004c93
https://hal.science/hal-03141632
https://hal.science/hal-03141632
Autor:
Svend Kjaer, Luyan Cao, Guillaume Romet-Lemonne, Ottilie von Loeffelholz, Andrew Purkiss, Michael Way, Carolyn A. Moores, Naoko Kogata
Publikováno v:
Biology Open, Vol 9, Iss 7 (2020)
Biology Open
Biology Open, Royal Society, 2020, 9 (7), pp.bio054304. ⟨10.1242/bio.054304⟩
article-version (VoR) Version of Record
Biology Open
Biology Open, Royal Society, 2020, 9 (7), pp.bio054304. ⟨10.1242/bio.054304⟩
article-version (VoR) Version of Record
The Arp2/3 complex regulates many cellular processes by stimulating formation of branched actin filament networks. Because three of its seven subunits exist as two different isoforms, mammals produce a family of Arp2/3 complexes with different proper
Publikováno v:
Journal of Muscle Research and Cell Motility
Journal of Muscle Research and Cell Motility, Springer Verlag, 2019, ⟨10.1007/s10974-019-09564-4⟩
Journal of Muscle Research and Cell Motility, Springer Verlag, 2019, ⟨10.1007/s10974-019-09564-4⟩
The regulated assembly of actin filaments is essential in nearly all cell types. Studying actin assembly dynamics can pose many technical challenges. A number of these challenges can be overcome by using microfluidics to observe and manipulate single
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2dcc3f0b54e9b11be6d309d61c6ae05
https://hal.archives-ouvertes.fr/hal-02387236/file/Wioland2019_Article_TheAdvantagesOfMicrofluidicsTo.pdf
https://hal.archives-ouvertes.fr/hal-02387236/file/Wioland2019_Article_TheAdvantagesOfMicrofluidicsTo.pdf
Autor:
Philippe P. Roux, Elias H. Barriga, Guillaume Romet-Lemonne, Aurélie Bertin, Antoine Jégou, Guillaume Charras, Ewa K. Paluch, Emma Ferber, Art Alberts, Roberto Mayor, Amina Yonis, Miia Bovellan, Geneviève Lavoie, Matthew B. Smith, Antoine Méant, Malti Vaghela, Luyan Cao, Priyamvada Chugh, Julien Maufront
Publikováno v:
Nature Cell Biology
Nature Cell Biology, Nature Publishing Group, 2020, 22, pp.803-814. ⟨10.1038/s41556-020-0531-y⟩
Nature Cell Biology, Nature Publishing Group, 2020, 22, pp.803-814. ⟨10.1038/s41556-020-0531-y⟩
International audience; Cell shape is controlled by the submembranous cortex, an actomyosin network mainly generated by two actin nucleators: the Arp2/3 complex and the formin mDia1. Changes in relative nucleator activity may alter cortical organizat