Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Lutz Dümbgen"'
Autor:
Niki Zumbrunnen, Lutz Dümbgen
Publikováno v:
Journal of Statistical Software, Vol 78, Iss 1, Pp 1-19 (2017)
Let (X, Y) be a random variable consisting of an observed feature vector X and an unobserved class label Y ∈ {1, 2, . . . , L} with unknown joint distribution. In addition, let D be a training data set consisting of n completely observed independen
Externí odkaz:
https://doaj.org/article/590d2bb070eb4ed19a2f9fca3ae871b5
Autor:
Karin Stettler, Xiaoming Li, Björn Sandrock, Sophie Braga-Lagache, Manfred Heller, Lutz Dümbgen, Beat Suter
Publikováno v:
Disease Models & Mechanisms, Vol 8, Iss 1, Pp 81-91 (2015)
XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only X
Externí odkaz:
https://doaj.org/article/ae1f7c724ef5423c8ee8bd93a0ecd6bf
Autor:
Lutz Dümbgen, Kaspar Rufibach
Publikováno v:
Journal of Statistical Software, Vol 39, Iss 06 (2011)
Maximum likelihood estimation of a log-concave density has attracted considerable attention over the last few years. Several algorithms have been proposed to estimate such a density. Two of those algorithms, an iterative convex minorant and an active
Externí odkaz:
https://doaj.org/article/4108383dbe2b4f11afb45487fc398e22
Publikováno v:
Oberwolfach Reports. 17:231-272
Publikováno v:
Dümbgen, Lutz; Mösching, Alexandre; Strähl, Christof (2021). Active set algorithms for estimating shape-constrained density ratios. Computational statistics & data analysis, 163, p. 107300. Elsevier 10.1016/j.csda.2021.107300
In many instances, imposing a constraint on the shape of a density is a reasonable and flexible assumption. It offers an alternative to parametric models, which can be too rigid, and to other nonparametric methods, which require the choice of tuning
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::208a887eb2864a18bd222329a3403dca
https://boris.unibe.ch/156874/1/cas-active-set.pdf
https://boris.unibe.ch/156874/1/cas-active-set.pdf
Autor:
Lutz Dümbgen, Jon A. Wellner
Publikováno v:
Dümbgen, Lutz; Wellner, Jon A. (2020). The density ratio of Poisson binomial versus Poisson distributions. Statistics & probability letters, 165, p. 108862. Elsevier 10.1016/j.spl.2020.108862
Let b ( x ) be the probability that a sum of independent Bernoulli random variables with parameters p 1 , p 2 , p 3 , … ∈ [ 0 , 1 ) equals x , where λ ≔ p 1 + p 2 + p 3 + ⋯ is finite. We prove two inequalities for the maximum of the density
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4df6dba535296ac4a3c03edc0ada70b6
https://boris.unibe.ch/145053/1/PoissonBinomial.pdf
https://boris.unibe.ch/145053/1/PoissonBinomial.pdf
Autor:
Alexandre Mösching, Lutz Dümbgen
Publikováno v:
Electron. J. Statist. 14, no. 1 (2020), 24-49
Mösching, Alexandre; Dümbgen, Lutz (2020). Monotone least squares and isotonic quantiles. Electronic journal of statistics, 14(1), pp. 24-49. Institute of Mathematical Statistics 10.1214/19-EJS1659
Mösching, Alexandre; Dümbgen, Lutz (2020). Monotone least squares and isotonic quantiles. Electronic journal of statistics, 14(1), pp. 24-49. Institute of Mathematical Statistics 10.1214/19-EJS1659
We consider bivariate observations $(X_{1},Y_{1}),\ldots,(X_{n},Y_{n})$ such that, conditional on the $X_{i}$, the $Y_{i}$ are independent random variables. Precisely, the conditional distribution function of $Y_{i}$ equals $F_{X_{i}}$, where $(F_{x}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::54bb54b6fff79d2c598200fe765ae141
https://projecteuclid.org/euclid.ejs/1578020615
https://projecteuclid.org/euclid.ejs/1578020615
Autor:
Lutz Dümbgen, Ehsan Zamanzade
Publikováno v:
Dümbgen, Lutz; Zamanzade, Ehsan (2020). Inference on a distribution function from ranked set samples. Annals of the Institute of Statistical Mathematics, 72(1), pp. 157-185. Springer 10.1007/s10463-018-0680-y
Consider independent observations $(X_1,R_1)$, $(X_2,R_2)$, \ldots, $(X_n,R_n)$ with random or fixed ranks $R_i \in \{1,2,\ldots,k\}$, while conditional on $R_i = r$, the random variable $X_i$ has the same distribution as the $r$-th order statistic w
Publikováno v:
Dümbgen, Lutz; Kolesnyk, Petro; Wilke, Ralf A. (2017). Bi-log-concave distribution functions. Journal of statistical planning and inference, 184, pp. 1-17. Elsevier 10.1016/j.jspi.2016.10.005
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference
Nonparametric statistics for distribution functions F or densities f = F ′ under qualitative shape constraints constitutes an interesting alternative to classical parametric or entirely nonparametric approaches. We contribute to this area by consid
Publikováno v:
Dümbgen, Lutz; Samworth, Richard J.; Wellner, Jon A. (2021). Bounding distributional errors via density ratios. Bernoulli, 27(2), pp. 818-852. International Statistical Institute 10.3150/20-BEJ1256
We present some new and explicit error bounds for the approximation of distributions. The approximation error is quantified by the maximal density ratio of the distribution $Q$ to be approximated and its proxy $P$. This non-symmetric measure is more
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e0e33fcd46f074e2ffffabd99896d21a