Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Luke L. Nelsen"'
Autor:
Louis DeBiasio, Luke L. Nelsen
Publikováno v:
Journal of Combinatorial Theory, Series B. 122:634-667
Lehel conjectured that in every 2-coloring of the edges of K n , there is a vertex disjoint red and blue cycle which span V ( K n ) . Łuczak, Rodl, and Szemeredi proved Lehel's conjecture for large n , Allen gave a different proof for large n , and
Autor:
Luke L. Nelsen
Publikováno v:
Christian Higher Education. 13:101-117
This article presents a historical defense of liberal arts education—a philosophy that is commonly claimed among Christian colleges and universities—in order to provide an understanding of liberal education to skeptics and subscribers alike. A su
Autor:
Jennifer Diemunsch, Nathan Graber, Derrick Stolee, Charlie Suer, Victor Larsen, Lauren M. Nelsen, Lucas Kramer, Luke L. Nelsen, Devon Sigler
Let $c:E(G)\to [k]$ be an edge-coloring of a graph $G$, not necessarily proper. For each vertex $v$, let $\bar{c}(v)=(a_1,\ldots,a_k)$, where $a_i$ is the number of edges incident to $v$ with color $i$. Reorder $\bar{c}(v)$ for every $v$ in $G$ in no
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f39d2850420f2bef8c85451c6501e58b
http://arxiv.org/abs/1506.08345
http://arxiv.org/abs/1506.08345
Autor:
Bernard Lidicky, Philip DeOrsey, Michael Ferrara, Jennifer Diemunsch, Stephen G. Hartke, Luke L. Nelsen, Sogol Jahanbekam, Derrick Stolee, Nathan Graber, Eric Sullivan
Publikováno v:
Scopus-Elsevier
The strong chromatic index of a graph $G$, denoted $\chi_s'(G)$, is the least number of colors needed to edge-color $G$ so that edges at distance at most two receive distinct colors. The strong list chromatic index, denoted $\chi_{s,\ell}'(G)$, is th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a685e061c1d393ed754746dae11c2208
http://www.scopus.com/inward/record.url?eid=2-s2.0-85051201191&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-85051201191&partnerID=MN8TOARS