Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Lukas A. Heinrich"'
Autor:
Tibor Šimko, Lukas Alexander Heinrich, Clemens Lange, Adelina Eleonora Lintuluoto, Danika Marina MacDonell, Audrius Mečionis, Diego Rodríguez Rodríguez, Parth Shandilya, Marco Vidal García
Publikováno v:
Frontiers in Big Data, Vol 4 (2021)
We describe a novel approach for experimental High-Energy Physics (HEP) data analyses that is centred around the declarative rather than imperative paradigm when describing analysis computational tasks. The analysis process can be structured in the f
Externí odkaz:
https://doaj.org/article/4dab27bdc65944d28fdfd79dd55aded4
Publikováno v:
SciPost Physics, Vol 9, Iss 2, p 022 (2020)
We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct sea
Externí odkaz:
https://doaj.org/article/02ccb01d6e0b497a9278961b7e33cf0c
Autor:
Kyle Cranmer, Sabine Kraml, Harrison Prosper, Philip Bechtle, Florian Bernlochner, Itay M. Bloch, Enzo Canonero, Marcin Chrzaszcz, Andrea Coccaro, Jan Conrad, Glen Cowan, Matthew Feickert, Nahuel Ferreiro, Andrew Fowlie, Lukas A. Heinrich, Alexander Held, Thomas Kuhr, Anders Kvellestad, Maeve Madigan, Farvah Nazila Mahmoudi, Knut Dundas Morå, Mark S. Neubauer, Maurizio Pierini, Juan Rojo, Sezen Sekmen, Luca Silvestrini, Veronica Sanz, Giordon H. Stark, Riccardo Torre, Robert Thorne, Wolfgang Waltenberger, Nicholas Wardle, Jonas Wittbrodt
Publikováno v:
SciPost Physics, Vol 12, Iss 1, p 037 (2022)
The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8866c20eee9650479e702b1399fe4736
http://cds.cern.ch/record/2780990
http://cds.cern.ch/record/2780990
Autor:
Thea Aarrestad, Melissa van Beekveld, Marcella Bona, Antonio Boveia, Sascha Caron, Joe Davies, Andrea de Simone, Caterina Doglioni, Javier Duarte, Amir Farbin, Honey Gupta, Luc Hendriks, Lukas A. Heinrich, James Howarth, Pratik Jawahar, Adil Jueid, Jessica Lastow, Adam Leinweber, Judita Mamuzic, Erzsébet Merényi, Alessandro Morandini, Polina Moskvitina, Clara Nellist, Jennifer Ngadiuba, Bryan Ostdiek, Maurizio Pierini, Baptiste Ravina, Roberto Ruiz de Austri, Sezen Sekmen, Mary Touranakou, Marija Vaškeviciute, Ricardo Vilalta, Jean-Roch Vlimant, Rob Verheyen, Martin White, Eric Wulff, Erik Wallin, Kinga A. Wozniak, Zhongyi Zhang
Publikováno v:
SciPost Physics, Vol 12, Iss 1, p 043 (2022)
SciPost physics 12(1), 043 (2022). doi:10.21468/SciPostPhys.12.1.043
SciPost physics 12(1), 043 (2022). doi:10.21468/SciPostPhys.12.1.043
We describe the outcome of a data challenge conducted as part of the Dark Machines Initiative and the Les Houches 2019 workshop on Physics at TeV colliders. The challenged aims at detecting signals of new physics at the LHC using unsupervised machine
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2217453d53e1dc4ddff87b3c69bcc2b5
http://cds.cern.ch/record/2771263
http://cds.cern.ch/record/2771263