Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Luiz Renato Fontes"'
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We continue the study of renewal contact processes initiated in a companion paper, where we showed that if the tail of the interarrival distribution $\mu$ is heavier than $t^{-\alpha}$ for some $\alpha 1$, then the critical value is positive in the o
Autor:
Junior Barrera, Luiz Renato Fontes, Claudio Gorodski, Clodoaldo Grotta Ragazzo, Yoshiharu Kohayakawa
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f31441e52e5218c3886bb12b054d5a6
We refine previous results concerning the Renewal Contact Processes. We significantly widen the family of distributions for the interarrival times for which the critical value can be shown to be strictly positive. The result now holds for any dimensi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::067bb3f764515736717da29ea97fefce
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We derive the existence of infinite level GREM-like K-processes by taking the limit of a sequence of finite level versions of such processes as the number of levels diverges. The main step in the derivation is obtaining the convergence of the sequenc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::04a39dbea3647e9d0a3d90b80e04da18
Publikováno v:
Progress in Probability ISBN: 9783030607531
We establish central limit theorems for the position and velocity of the charged particle in the mechanical particle model introduced by Fontes, Jordao Neves and Sidoravicius (2000).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::eb1eefb48837c0dafb1d17cd84e6c66b
https://doi.org/10.1007/978-3-030-60754-8_18
https://doi.org/10.1007/978-3-030-60754-8_18
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::467425f169dbd8f0b9e9acd2987c5f13
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We study the convergence time to equilibrium of the Metropolis dynamics for the Generalized Random Energy Model with an arbitrary number of hierarchical levels, a finite and reversible continuous-time Markov process, in terms of the spectral gap of i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aa5846c96d71e68ea52cc7960c17d79b
This is a volume in memory of Vladas Sidoravicius who passed away in 2019. Vladas has edited two volumes appeared in this series ('In and Out of Equilibrium') and is now honored by friends and colleagues with research papers reflecting Vladas'interes
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Ann. Appl. Probab. 30, no. 1 (2020), 208-258
Universidade de São Paulo (USP)
instacron:USP
Ann. Appl. Probab. 30, no. 1 (2020), 208-258
We study a system of random walks, known as the frog model, starting from a profile of independent Poisson($\lambda$) particles per site, with one additional active particle planted at some vertex $\mathbf{o}$ of a finite connected simple graph $G=(V
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::64202459f7442a663e55f12df5ee82b4
Autor:
Luiz Renato Fontes
Publikováno v:
Sojourns in Probability Theory and Statistical Physics-II ISBN: 9789811502972
We propose a metric space of coalescing pairs of paths on which we are able to prove in a fairly direct way convergence of objects such as the persistence probability in the (one dimensional, nearest neighbor, symmetric) voter model or the diffusivel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::db8c35fb8e32d54e12bca6150b48adb4
https://doi.org/10.1007/978-981-15-0298-9_7
https://doi.org/10.1007/978-981-15-0298-9_7