Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Luiz Felipe de O. Campos"'
Autor:
Deris Eduardo Spina, Luiz Felipe de O. Campos, Wallthynay F. de Arruda, Afrânio Melo, Marcelo F. de S. Alves, Gildeir Lima Rabello, Thiago K. Anzai, José Carlos Pinto
Publikováno v:
Digital Chemical Engineering, Vol 12, Iss , Pp 100162- (2024)
Fault detection constitutes a fundamental task for predictive maintenance, requiring mathematical models that can be conveniently provided by data-driven techniques. Autoencoders are a particular type of unsupervised Artificial Neural Networks that c
Externí odkaz:
https://doaj.org/article/47d9f106e9bb46699f6cc5f7a1f3f6a9
Autor:
Afrânio Melo, Tiago S.M. Lemos, Rafael M. Soares, Deris Spina, Nayher Clavijo, Luiz Felipe de O. Campos, Maurício Melo Câmara, Thiago Feital, Thiago K. Anzai, Pedro H. Thompson, Fábio C. Diehl, José Carlos Pinto
Publikováno v:
Digital Chemical Engineering, Vol 13, Iss , Pp 100182- (2024)
This paper introduces BibMon, a Python package that provides predictive models for data-driven fault detection and diagnosis, soft sensing, and process condition monitoring. Key features include regression and reconstruction models, preprocessing pip
Externí odkaz:
https://doaj.org/article/390bdfd826fa469781abab3bff6de4c0
Autor:
Marília Caroline C. de Sá, Luiz Felipe de O. Campos, Fabio C. Diehl, Pedro H. Thompson, Afrânio Melo, Tahyná B. Fontoura, Diego Queiroz Faria de Menezes, José Carlos Pinto, Bruno F. Oechsler, Thiago K. Anzai
Publikováno v:
Chemical Engineering Research and Design. 177:376-393
In the present study, a previously proposed mathematical model is improved with inclusion of the energy balance, considering the Joule–Thomson effect and the heat exchange between the retentate and permeate streams, in order to explain the temperat
Autor:
Nayher A. Clavijo, Fabio C. Diehl, Giovani G. Gerevini, Príamo A. Melo, Tiago Lemos, Luiz Felipe de O. Campos, José Carlos Pinto
Publikováno v:
Journal of Petroleum Science and Engineering. 215:110716
Autor:
Thiago K. Anzai, José Carlos Pinto, Tiago Lemos, Rafael M. Soares, Afrânio Melo, Maurício M. Câmara, Nayher Clavijo, Luiz Felipe de O. Campos, Thiago Feital
Publikováno v:
Computers & Chemical Engineering. 155:107512
In this paper a semi-automatic computationally inexpensive system is developed and implemented for monitoring and fault detection of industrial processes. The system uses a soft sensor based on Echo State Networks (ESN) and is able to capture the non