Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Ludwig Kohaupt"'
Autor:
Ludwig Kohaupt
Publikováno v:
Communications in Advanced Mathematical Sciences, Vol 5, Iss 2, Pp 48-77 (2022)
In an earlier paper, the author derived generalized Rayleigh-quotient formulas for the real parts, imaginary parts, and moduli of the eigenvalues of diagonalizable matrices. More precisely, max-, min-max-, min-, and max-min-formulas were obtained. In
Externí odkaz:
https://doaj.org/article/73c6286792514a00ba6f1f66f23b5005
Autor:
Ludwig Kohaupt
Publikováno v:
Communications in Advanced Mathematical Sciences, Vol 4, Iss 2, Pp 55-74 (2021)
For a symmetric linear compact resp. symmetric densely defined linear operator with compact inverse, expansion theorems in series of eigenvectors are known. The aim of the present paper is to generalize the known expansion theorems to the case of cor
Externí odkaz:
https://doaj.org/article/6c977b830eee44cb85de0c2aa4220ac9
Autor:
Ludwig Kohaupt
Publikováno v:
Universal Journal of Mathematics and Applications, Vol 4, Iss 1, Pp 9-25 (2021)
In the present paper, generalized Rayleigh-quotient formulas for the real parts, imaginary parts, and moduli of the eigenvalues of general (not necessarily diagonalizable) matrices are derived by using quotients of the form $(Au,v)/(u,v)$ instead of
Externí odkaz:
https://doaj.org/article/18e5518855cb477fadbe03f8161fc2e3
Autor:
Ludwig Kohaupt
Publikováno v:
Journal of Mathematical Sciences and Modelling, Vol 3, Iss 2, Pp 55-75 (2020)
In the present paper, formulas for the Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of general matrices are obtained that resemble corresponding formulas for the eigenvalues of self-adjoint matric
Externí odkaz:
https://doaj.org/article/8a4e7201505c41dfa1d9c89359e49d56
Autor:
Ludwig Kohaupt
Publikováno v:
Journal of Mathematical Sciences and Modelling, Vol 2, Iss 2, Pp 82-98 (2019)
In the present paper, formulas for the Rayleigh-quotient representation of the real parts, imaginary parts, and moduli of the eigenvalues of diagonalizable matrices are obtained that resemble corresponding formulas for the eigenvalues of self-adjoint
Externí odkaz:
https://doaj.org/article/306722a484454b60b317d5c0abf60bda
Autor:
Ludwig Kohaupt
Publikováno v:
Communications in Advanced Mathematical Sciences, Vol 2, Iss 1, Pp 27-47 (2019)
As the main new result, we show that one can construct a time-dependent positive definite matrix $R(t,t_0)$ such that the solution $x(t)$ of the initial value problem $\dot{x}(t)=A\,x(t)+h(t,x(t)), \; x(t_0)=x_0,$ under certain conditions satisfies t
Externí odkaz:
https://doaj.org/article/73af92ae9f31413ebca29e1910361c18
Autor:
Ludwig Kohaupt
Publikováno v:
Cogent Education, Vol 2, Iss 1 (2015)
The discrete Fourier series is a valuable tool developed and used by mathematicians and engineers alike. One of the most prominent applications is signal processing. Usually, it is important that the signals be transmitted fast, for example, when tra
Externí odkaz:
https://doaj.org/article/1172a8b3296f43a9b14f9262910d3a18
Autor:
LUDWIG KOHAUPT1 lkohaupt4@web.de, YAN WU2 yan@georgiasouthern.edu
Publikováno v:
Constructive Mathematical Analysis. Sep2022, Vol. 5 Issue 3, p168-182. 15p.
Autor:
Ludwig Kohaupt
Publikováno v:
JOURNAL OF ADVANCES IN MATHEMATICS. 14:7702-7728
In the present paper, generalized Rayleigh-quotient formulas for the real parts, imaginary parts, and moduli of the eigenvalues of diagonalizable matrices are derived. These formulas are new and correspond to similar formulas for the eigenvalues of s
Autor:
Friedrich Stummel, Ludwig Kohaupt
Dieses Buch vereint ein Vorlesungsskript über die Behandlung von Eigenwertaufgaben in Hilbertschen Räumen von Friedrich Stummel und Übungsaufgaben zu den Eigenwertaufgaben sowie zugehörigen Lösungen von Ludwig Kohaupt. Neben Standardmethoden wer