Zobrazeno 1 - 10
of 102
pro vyhledávání: '"Lucas primality test"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Arab Journal of Mathematical Sciences, Vol 24, Iss 1, Pp 9-15 (2018)
We prove two properties regarding the Fibonacci and Lucas Sequences modulo a prime and use these to generalize the well-known property p ∣ F p − p 5 . We then discuss these results in the context of primality testing.
Autor:
Gyöngyvér Kiss
Publikováno v:
Acta Universitatis Sapientiae: Informatica, Vol 7, Iss 2, Pp 125-142 (2015)
This paper deals with an implementation of the elliptic curve primality proving (ECPP) algorithm of Atkin and Morain. As the ECPP algorithm is not deterministic, we are developing a strategy to avoid certain situations in which the original implement
Publikováno v:
Designs, Codes and Cryptography. 77:515-539
In his extensive memoir on the sequences that now bear his name, Lucas provided some primality tests for numbers $$N$$N, where $$N\pm 1$$N±1 is divisible by a large prime power. No proofs were provided for these tests, and they are not correct as st
Autor:
Shigenori Uchiyama, Kazuki Azami
Publikováno v:
JSIAM Letters. 6:1-4
Autor:
Shamil Ishmukhametov, B. Mubarakov
Publikováno v:
Lobachevskii Journal of Mathematics. 34:304-312
The well-known Miller-Rabin Primality Test MRPT is used to check naturals to be prime or composite. We study the dependence between the length of testing numbers and the number of rounds of MRPT sufficient to give the correct answer and give some rec
Publikováno v:
International Journal of Computer Network and Information Security. 5:51-57
The RSA cryptosystem, invented by Ron Rivest, Adi Shamir and Len Adleman was first publicized in the August 1977 issue of Scientific A merican. The security level of this algorith m very much depends on two large prime nu mbers. To check the primalit
Autor:
Sang-Un Lee
Publikováno v:
The Journal of the Institute of Webcasting, Internet and Telecommunication. 13:103-109
Miller-Rabin method is the most prevalently used primality test. However, this method mistakenly reports a Carmichael number or semi-prime number as prime (strong lier) although they are composite numbers. To eradicate this problem, it selects k numb
Publikováno v:
2016 International Conference on Accessibility to Digital World (ICADW).
With the increasing popularity and usage of cryptography and network security, prime generation and primality testing has become a significant issue. Various primality tests have been introduced in the past and we compare and contrast some popular pr