Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Luca Scarpa"'
Autor:
Luca Scarpa, Ulisse Stefanelli
Publikováno v:
Mathematical Models and Methods in Applied Sciences. 32:2759-2761
In this erratum we correct a mistake in the proof of Lemma 3.5 of Ref. 1. This requires a slight refinement of the assumptions leading to the existence result of Ref. 1.
Autor:
Luca Scarpa, Margherita Zanella
Well-posedness à la Friedrichs is proved for a class of degenerate Kolmogorov equations associated to stochastic Allen–Cahn equations with logarithmic potential. The thermodynamical consistency of the model requires the potential to be singular an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5d69c64701dd9961657e9441a6cbf414
https://hdl.handle.net/11311/1228111
https://hdl.handle.net/11311/1228111
Publikováno v:
Journal of Evolution Equations. 22
Publikováno v:
Journal of Differential Equations. 289:35-58
We prove existence of solutions and study the nonlocal-to-local asymptotics for nonlocal, convective, Cahn-Hilliard equations in the case of a W 1 , 1 convolution kernel and under homogeneous Neumann conditions. Any type of potential, possibly also o
Autor:
Luca Scarpa, Ulisse Stefanelli
Publikováno v:
Stochastics and Partial Differential Equations: Analysis and Computations.
Publikováno v:
Archive for Rational Mechanics and Analysis
We consider a class of nonlocal viscous Cahn–Hilliard equations with Neumann boundary conditions for the chemical potential. The double-well potential is allowed to be singular (e.g. of logarithmic type), while the singularity of the convolution ke
Autor:
Ulisse Stefanelli, Luca Scarpa
Publikováno v:
Mathematical models and methods in applied sciences 30 (2020): 991–1031. doi:10.1142/S0218202520500219
info:cnr-pdr/source/autori:L. Scarpa and U. Stefanelli/titolo:Doubly nonlinear stochastic evolution equations/doi:10.1142%2FS0218202520500219/rivista:Mathematical models and methods in applied sciences/anno:2020/pagina_da:991/pagina_a:1031/intervallo_pagine:991–1031/volume:30
info:cnr-pdr/source/autori:L. Scarpa and U. Stefanelli/titolo:Doubly nonlinear stochastic evolution equations/doi:10.1142%2FS0218202520500219/rivista:Mathematical models and methods in applied sciences/anno:2020/pagina_da:991/pagina_a:1031/intervallo_pagine:991–1031/volume:30
We present an existence theory for martingale and strong solutions to doubly nonlinear evolution equations in a separable Hilbert space in the form $$d(Au) + Bu\,dt \ni F(u)\,dt + G(u)\,dW$$ where both $A$ and $B$ are maximal monotone operators, poss
A phase field model which describes the formation of protein-RNA complexes subject to phase segregation is analyzed. A single protein, two RNA species, and two complexes are considered. Protein and RNA species are governed by coupled reaction-diffusi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::95f1689cee6fc8ff2c6eb7e621ab0d62
http://arxiv.org/abs/2203.03258
http://arxiv.org/abs/2203.03258
We study a large class of stochastic $p$-Laplace Allen-Cahn equations with singular potential. Under suitable assumptions on the (multiplicative-type) noise we first prove existence, uniqueness, and regularity of variational solutions. Then, we show
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02c9a48010227255cfe648a9938ae3f7
http://arxiv.org/abs/2110.06544
http://arxiv.org/abs/2110.06544
Autor:
Carlo Marinelli, Luca Scarpa
Publikováno v:
Geometry and Invariance in Stochastic Dynamics ISBN: 9783030874315
We provide sufficient conditions on the coefficients of a stochastic evolution equation on a Hilbert space of functions driven by a cylindrical Wiener process ensuring that its mild solution is positive if the initial datum is positive. As an applica
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::76c58759b1302381fc70c1218a4fe34c
http://hdl.handle.net/11311/1204407
http://hdl.handle.net/11311/1204407