Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Luca Giuzzi"'
Let $X_n(K)$ be a building of Coxeter type $X_n = A_n$ or $X_n = D_n$ defined over a given division ring $K$ (a field when $X_n = D_n$). For a non-connected set $J$ of nodes of the diagram $X_n$, let $\Gamma(K) = Gr_J(X_n(K))$ be the $J$-Grassmannian
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5f07ffb5bf046886461dc366c3135f0b
http://hdl.handle.net/11379/562016
http://hdl.handle.net/11379/562016
We provide a new construction of $[n,9,n-9]_q$ near-MDS codes arising from elliptic curves with $n$ ${\mathbb F}_q$-rational points. Furthermore we show that in some cases these codes cannot be extended to longer near-MDS codes.
Comment: post-re
Comment: post-re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b746da4884209eea1c3b499fe190b16c
http://hdl.handle.net/11589/234339
http://hdl.handle.net/11589/234339
Let $\Gamma$ be an embeddable non-degenerate polar space of finite rank $n \geq 2$. Assuming that $\Gamma$ admits the universal embedding (which is true for all embeddable polar spaces except grids of order at least $5$ and certain generalized quadra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::457e24407eea7453fb2a22b675a00c35
http://hdl.handle.net/11379/545577
http://hdl.handle.net/11379/545577
Autor:
Angela Aguglia, Luca Giuzzi
In [A. Aguglia, A. Cossidente, G. Korchmaros, "On quasi-Hermitian varieties", J. Comb. Des. 20 (2012), 433-447] new quasi-Hermitian varieties ${\mathcal M}_{\alpha,\beta}$ in $\mathrm{PG}(r,q^2)$ depending on a pair of parameters $\alpha,\beta$ from
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::af5400d5c6e6ce322d0ed80a79ad6487
Autor:
Ilaria Cardinali, Luca Giuzzi
Publikováno v:
Journal of Pure and Applied Algebra. 222:2975-2988
In this paper we determine the minimum distance of orthogonal line-Grassmann codes for q even. The case q odd was solved in [3] . For n ≠ 3 we also determine their second smallest distance. Furthermore, we show that for q even all minimum weight co
Publikováno v:
Finite Fields and Their Applications. 75:101895
Let $\Gamma(n,k)$ be the Grassmann graph formed by the $k$-dimensional subspaces of a vector space of dimension $n$ over a field $\mathbb F$ and, for $t\in \mathbb{N}\setminus \{0\}$, let $\Delta_t(n,k)$ be the subgraph of $\Gamma(n,k)$ formed by the
Publikováno v:
Ars Mathematica Contemporanea. 21:#P1.04
In this paper we characterize the non-singular Hermitian variety ℋ(6, q 2 ) of PG(6, q 2 ) , q ≠ 2 among the irreducible hypersurfaces of degree q + 1 in PG(6, q 2 ) not containing solids by the number of its points and the existence of a solid S
In this paper we compute the generating rank of $k$-polar Grassmannians defined over commutative division rings. Among the new results, we compute the generating rank of $k$-Grassmannians arising from Hermitian forms of Witt index $n$ defined over ve
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0f28c883100a815291a29290ae20087b
Autor:
Luca Giuzzi, Ferdinando Zullo
For any admissible value of the parameters $n$ and $k$ there exist $[n,k]$-Maximum Rank distance ${\mathbb F}_q$-linear codes. Indeed, it can be shown that if field extensions large enough are considered, almost all rank distance codes are MRD. On th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c714ab2bdeefce227ec28efc2419517a
http://hdl.handle.net/11379/514702
http://hdl.handle.net/11379/514702
Autor:
Luca Giuzzi, Ilaria Cardinali
In [I. Cardinali and L. Giuzzi. Line Hermitian Grassmann codes and their parameters. Finite Fields Appl., 51: 407-432, 2018] we introduced line Hermitian Grassmann codes and determined their parameters. The aim of this paper is to present (in the spi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1311d63117e88d1fd1c5a168857d0f95
http://arxiv.org/abs/1804.03024
http://arxiv.org/abs/1804.03024