Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Luca Barbieri-Viale"'
Autor:
LUCA BARBIERI VIALE
Publikováno v:
Communications in Algebra. 51:3314-3345
We furnish any category of a universal (co)homology theory. Universal (co)homologies and universal relative (co)homologies are obtained by showing representability of certain functors and take values in $R$-linear abelian categories of motivic nature
Autor:
LUCA BARBIERI VIALE
Following Eilenberg-Steenrod axiomatic approach we construct the universal ordinary homology theory for any homological structure on a given category by representing ordinary theories with values in abelian categories. For a convenient category of sp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1c0872c0c0493b21c600762fd6d97418
http://arxiv.org/abs/2107.07993
http://arxiv.org/abs/2107.07993
Autor:
Mike Prest, Luca Barbieri-Viale
Publikováno v:
Rendiconti del Seminario Matematico della Università di Padova. 139:205-224
Making use of Freyd's free abelian category on a preadditive category we show that if $T:D\rightarrow \mathcal{A}$ is a representation of a quiver $D$ in an abelian category $\mathcal{A}$ then there is an abelian category $\mathcal{A} (T)$, a faithfu
Publikováno v:
Journal of Algebra. 487:294-316
After introducing the Ogus realization of 1-motives we prove that it is a fully faithful functor. More precisely, following a framework introduced by Ogus, considering an enriched structure on the de Rham realization of 1-motives over a number field,
Autor:
Luca Barbieri-Viale, Mike Prest
Publikováno v:
Journal of Pure and Applied Algebra. 224:106267
Following Nori's original idea we here provide certain motivic categories with a canonical tensor structure. These motivic categories are associated to a cohomological functor on a suitable base category and the tensor structure is induced by the car
We construct a period regulator for motivic cohomology of an algebraic scheme over a subfield of the complex numbers. For the field of algebraic numbers we formulate a period conjecture for motivic cohomology by saying that this period regulator is s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::603168987c39b176270fd81dc4ead486
http://arxiv.org/abs/1805.07121
http://arxiv.org/abs/1805.07121
We construct a tensor product on Freyd's universal abelian category attached to an additive tensor category or a tensor quiver and establish a universal property. This is used to give an alternative construction for the tensor product on Nori motives
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::18a9225e6dfe1276590048f2fea9a010
http://arxiv.org/abs/1803.00809
http://arxiv.org/abs/1803.00809
We give a new construction, based on categorical logic, of Nori's $\mathbb Q$-linear abelian category of mixed motives associated to a cohomology or homology functor with values in finite-dimensional vector spaces over $\mathbb Q$. This new construct
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::739e01e2bd41f81dc31f79045fa84217
http://hdl.handle.net/11383/2076068
http://hdl.handle.net/11383/2076068
Autor:
Joseph Ayoub, Luca Barbieri-Viale
Publikováno v:
Mathematische Annalen. 361:367-402
Let \(\mathsf{{ EHM}}\) be Nori’s category of effective homological mixed motives. In this paper, we consider the thick abelian subcategory \(\mathsf{{ EHM}}_1\subset \mathsf{{ EHM}}\) generated by the \(i\)-th relative homology of pairs of varieti
Autor:
Luca Barbieri-Viale
Considering a (co)homology theory $\mathbb{T}$ on a base category $\mathcal{C}$ as a fragment of a first-order logical theory we here construct an abelian category $\mathcal{A}[\mathbb{T}]$ which is universal with respect to models of $\mathbb{T}$ in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::abfa00eb20634b15987513597b0e0218
http://arxiv.org/abs/1602.05053
http://arxiv.org/abs/1602.05053