Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Luca Arpaia"'
Ocean model performances are highly related to the vertical coordinate system implemented. We study geo-potential (or z-) coordinates and we focus on the numerical treatment of the moving free surface. Typically z-coordinate models are coded with a s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3fa4d9ec17c1d5d9c4b5b39b4835e54c
https://doi.org/10.5194/egusphere-egu23-9551
https://doi.org/10.5194/egusphere-egu23-9551
Autor:
Luca Arpaia
This is the SHYFEM model code - version 7_5_71 - with surface-adaptive z-coordinates. The code implements z-coordinate with insertion and removal of surface layers in order to to deal with an arbitrarily large tidal oscillation independently of the v
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c499e5a2f7bc8fe7824eec82a101d07
Autor:
Georg Umgiesser, Christian Ferrarin, Marco Bajo, Debora Bellafiore, Andrea Cucco, Francesca De Pascalis, Michol Ghezzo, William McKiver, Luca Arpaia
Publikováno v:
Ocean Modelling. 179:102123
Publikováno v:
European Journal of Mechanics-B/Fluids
European Journal of Mechanics-B/Fluids, 2018, ⟨10.1016/j.euromechflu.2018.01.001⟩
European Journal of Mechanics-B/Fluids, Elsevier, 2018, ⟨10.1016/j.euromechflu.2018.01.001⟩
European Journal of Mechanics-B/Fluids, 2018, ⟨10.1016/j.euromechflu.2018.01.001⟩
European Journal of Mechanics-B/Fluids, Elsevier, 2018, ⟨10.1016/j.euromechflu.2018.01.001⟩
International audience; Despite the recognized impact of tidal bores on estuarine ecosystems, the large scale mechanism of bore formation in convergent alluvial estuaries is still under investigation. So far, field data exist only for a small number
Autor:
Luca Arpaia, Mario Ricchiuto
Publikováno v:
Journal of Computational Physics
Journal of Computational Physics, Elsevier, 2020, 405, pp.109173. ⟨10.1016/j.jcp.2019.109173⟩
Journal of Computational Physics, 2020, 405, pp.109173. ⟨10.1016/j.jcp.2019.109173⟩
Journal of Computational Physics, Elsevier, 2020, 405, pp.109173. ⟨10.1016/j.jcp.2019.109173⟩
Journal of Computational Physics, 2020, 405, pp.109173. ⟨10.1016/j.jcp.2019.109173⟩
International audience; We consider the numerical approximation of the Shallow Water Equations (SWEs) in spherical geometry for oceanographic applications. To provide enhanced resolution of moving fronts present in the flow we consider adaptive discr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fb0ad55163050b5e3c5560cb5742cc44
https://hal.inria.fr/hal-02422335/file/ar-jcp20.pdf
https://hal.inria.fr/hal-02422335/file/ar-jcp20.pdf
Publikováno v:
Ocean Modelling
Ocean Modelling, Elsevier, 2021, pp.101915. ⟨10.1016/j.ocemod.2021.101915⟩
Ocean Modelling, 2021, pp.101915. ⟨10.1016/j.ocemod.2021.101915⟩
Ocean Modelling, Elsevier, 2021, pp.101915. ⟨10.1016/j.ocemod.2021.101915⟩
Ocean Modelling, 2021, pp.101915. ⟨10.1016/j.ocemod.2021.101915⟩
International audience; In this work we consider an e cient discretization of the Shallow Water Equations in spherical geometry for oceanographic applications. Instead of the classical 2d-covariant or 3d-Cartesian approaches, we focus on the mixed 3d
Autor:
Luca Arpaia, Mario Ricchiuto
Publikováno v:
Computers and Fluids
Computers and Fluids, 2018, 160, pp.175-203. ⟨10.1016/j.compfluid.2017.10.026⟩
Computers and Fluids, Elsevier, 2018, 160, pp.175-203. ⟨10.1016/j.compfluid.2017.10.026⟩
Computers and Fluids, 2018, 160, pp.175-203. ⟨10.1016/j.compfluid.2017.10.026⟩
Computers and Fluids, Elsevier, 2018, 160, pp.175-203. ⟨10.1016/j.compfluid.2017.10.026⟩
We investigate the potential of the so-called "relocation" mesh adaptation in terms of resolution and efficiency for the simulation of free surface flows in the near shore region. Our work is developed in three main steps. First, we consider several
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5ba369757611b1b31f8c3254785e3d41
https://inria.hal.science/hal-01938713/file/ar18.pdf
https://inria.hal.science/hal-01938713/file/ar18.pdf