Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Lubomira G. Softova"'
Publikováno v:
Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali, Vol 98, Iss S2, p A1 (2020)
We provide W^(2,p) - a priori estimates for the strong solutions to Venttsel boundary value problems for linear elliptic operators with discontinuous coefficients.
Externí odkaz:
https://doaj.org/article/00587f58f5084f3bb85610eab64b4825
Publikováno v:
Electronic Journal of Differential Equations, Vol 2018, Iss 110,, Pp 1-24 (2018)
We show continuity in generalized Orlicz-Morrey spaces $M_{\Phi,\varphi}(\mathbb{R}^n)$ of sublinear integral operators generated by Calderon-Zygmund operator and their commutators with BMO functions. The obtained estimates are used to study globa
Externí odkaz:
https://doaj.org/article/1f5908ab2f5c4ccaa4dca2adb207105f
Autor:
Luisa Fattorusso, Lubomira G. Softova
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2020, Iss 36, Pp 1-13 (2020)
We consider the Dirichlet problem for a class of quasilinear elliptic systems in domain with irregular boundary. The principal part satisfies componentwise coercivity condition and the nonlinear terms are Carath\'eodory maps having Morrey regularity
Autor:
Lubomira G. Softova
Publikováno v:
Electronic Journal of Differential Equations, Vol 2001, Iss 51, Pp 1-25 (2001)
Global regularity in Morrey spaces is derived for the regular oblique derivative for linear uniformly parabolic operators. The principal coefficients of the operator are supposed to be discontinuous, belonging to Sarason's class of functions with van
Externí odkaz:
https://doaj.org/article/5eb94ea21a7f404d98b685fae81a152c
Publikováno v:
Electronic Journal of Differential Equations, Vol 2000, Iss 39, Pp 1-17 (2000)
This article presents a study of the regular oblique derivative problem $$ displaylines{ sum_{i,j=1}^n a^{ij}(x) frac{partial^2 u }{partial x_ipartial x_j} =f(x) cr frac{partial u }{partial ell(x)}+ sigma(x) u = varphi(x),. }$$ Assuming that the coef
Externí odkaz:
https://doaj.org/article/0dafbb0dc47f44b48ac258c9fd59cbf3
We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the base of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a7e3cdf79cf372c89fe4318feb8b4866
http://hdl.handle.net/11386/4724938
http://hdl.handle.net/11386/4724938
We derive the Calderon–Zygmund property in generalized Morrey spaces for the strong solutions to 2 b -order linear parabolic systems with discontinuous principal coefficients.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3037fae43fd6a5f25cdb8bcc1475bf94
http://hdl.handle.net/11589/206080
http://hdl.handle.net/11589/206080
Autor:
Lubomira G. Softova
Publikováno v:
Complex Variables and Elliptic Equations. 63:1581-1594
We consider non-linear elliptic systems satisfying componentwise coercivity condition. The non-linear terms have controlled growths with respect to the solution and its gradient, while the behaviour in x is governed by functions in Morrey spaces. We
Autor:
Sun-Sig Byun, Lubomira G. Softova
We obtain Calder\'on-Zygmund type estimates in generalized Morrey spaces for nonlinear equations of $p$-Laplacian type. Our result is obtained under minimal regularity assumptions both on the operator and on the domain. This result allows us to study
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6958d1683b3a25bb5dfa6b7cab4370d7
http://hdl.handle.net/11386/4717763
http://hdl.handle.net/11386/4717763