Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Luan, Nguyen Ngoc"'
This paper presents a study of generalized polyhedral convexity under basic operations on multifunctions. We address the preservation of generalized polyhedral convexity under sums and compositions of multifunctions, the domains and ranges of general
Externí odkaz:
http://arxiv.org/abs/2303.10520
In this paper we study some relationships between polyhedral convex sets (PCS) and generalized polyhedral convex sets (GPCS). In particular, we clarify by a counterexample that the necessary and sufficient conditions for the separation of a convex se
Externí odkaz:
http://arxiv.org/abs/2212.12100
We consider the conic linear program given by a closed convex cone in an Euclidean space and a matrix, where vector on the right-hand-side of the constraint system and the vector defining the objective function are subject to change. Using the strict
Externí odkaz:
http://arxiv.org/abs/2012.09330
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Thanh Luan, Nguyen Ngoc, Okada, Takuya, Arata, Ruka, Prudhvi, Lanke, Miyaguchi, Moe, Kodama, Yuri, Awale, Suresh, Toyooka, Naoki
Publikováno v:
In Tetrahedron 10 September 2022 122
Autor:
Luan, Nguyen Ngoc, Yao, Jen-Chih
Generalized polyhedral convex optimization problems in locally convex Hausdorff topological vector spaces are studied systematically in this paper. We establish solution existence theorems, necessary and sufficient optimality conditions, weak and str
Externí odkaz:
http://arxiv.org/abs/1709.10227
Generalized polyhedral convex sets, generalized polyhedral convex functions on locally convex Hausdorff topological vector spaces, and the related constructions such as sum of sets, sum of functions, directional derivative, infimal convolution, norma
Externí odkaz:
http://arxiv.org/abs/1705.06892
Autor:
Luan, Nguyen Ngoc
This paper establishes several new facts on generalized polyhedral convex sets and shows how they can be used in vector optimization. Among other things, a scalarization formula for the efficient solution sets of generalized vector optimization probl
Externí odkaz:
http://arxiv.org/abs/1705.06875
Autor:
Luan, Nguyen Ngoc, Yen, Nguyen Dong
It is well known that finite-dimensional polyhedral convex sets can be generated by finitely many points and finitely many directions. Representation formulas in this spirit are obtained for convex polyhedra and generalized convex polyhedra in locall
Externí odkaz:
http://arxiv.org/abs/1705.06874
Autor:
Luan, Nguyen Ngoc
Piecewise linear vector optimization problems in a locally convex Hausdorff topological vector spaces setting are considered in this paper. The efficient solution set of these problems are shown to be the unions of finitely many semi-closed generaliz
Externí odkaz:
http://arxiv.org/abs/1705.06893