Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Lu-san Chen"'
Publikováno v:
Proceedings of Indian National Science Academy, Vol 9, Iss 3 (2015)
ON NONLINEAR OSCILLATIONS FOR nTH ORDER DELAY INEQUALITIES
Publikováno v:
Bulletin of the London Mathematical Society. 10:186-190
Autor:
Lu-San Chen
Publikováno v:
Annali di Matematica Pura ed Applicata. 117:41-53
We investigate the equation $$\left( {r_{n - 1} \left( t \right)\left( {r_{n - 2} \left( t \right)\left( {...} \right)\left( {r_2 \left( t \right)\left( {r_1 \left( t \right)x'\left( t \right)} \right)'...} \right)'} \right)'} \right)' + a\left( t \r
Autor:
Cheh-Chih Yeh, Lu-San Chen
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 89:347-353
SynopsisThis note presents some integrodifferential inequalities in n-independent variables which are generalizations of the integrodifferential inequalities recently established by Pachpatte in two independent variables.
Autor:
Lu-San Chen
Publikováno v:
Journal of Mathematical Analysis and Applications. 57:481-485
Publikováno v:
Yokohama Mathematical Journal = 横濱市立大學紀要. D部門, 数学. 26:1-6
In this note we shall prove the uniqueness and existence of the weak solutions for the Cauchy problem: $Lu=f$ for $(x, t)¥in R^{n}¥times(0,T$] $u(x, 0)=u_{0}(x)¥in L_{1oc}^{2}(R^{n})$ for $xeR^{n}$ where the coefficients of $L
Autor:
Lu-San Chen
Publikováno v:
Annali di Matematica Pura ed Applicata. 121:207-215
Recently, Kuroda-Huang[3] starting from an integral equality, due to Aronson[1] treated asymptotic behavior of weak solutions of the Cauchy problem for an uniformly parabolic operator of the form: $$Lu \equiv \sum\limits_{i,j = 1}^n {\frac{\partial }
Autor:
Lu-San Chen
Publikováno v:
Annali di Matematica Pura ed Applicata. 112:305-314
In this paper we are dealing with the oscillatory and asymptotic behavior of n-th order (n>1) retarded differential equations $$[r(t)x^{(n - 1)} (t)]' + \delta \mathop \sum \limits_{i = 1}^m p_i (t) \varphi \left( {x[g_i (t)]} \right) = 0$$ which con
Autor:
Cheh-Chih Yeh, Lu-San Chen
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 91:135-145
SynopsisThis paper studies the equationwhere the differential operator Ln is defined byand a necessary and sufficient condition that all oscillatory solutions of the above equation converge to zero asymptotically is presented. The results obtained ex
Autor:
Lu-San Chen, Cheh-Chih Yeh
Publikováno v:
Applicable Analysis. 8:195-199