Zobrazeno 1 - 10
of 596
pro vyhledávání: '"Lu, YuFeng"'
The local and global well-posedness for the one dimensional fourth-order nonlinear Schr\"odinger equation are established in the modulation space $M^{s}_{2,q}$ for $s\geq \frac12$ and $2\leq q <\infty$. The local result is based on the $U^p-V^p$ spac
Externí odkaz:
http://arxiv.org/abs/2409.11002
In this paper, we continue Curto-Hwang-Lee's work to study the connection between hyponormality and subnormality for block Toeplitz operators acting on the vector-valued Hardy space of the unit circle.Curto-Hwang-Lee's work focuses primarily on hypon
Externí odkaz:
http://arxiv.org/abs/2308.01373
The paper is considered with the dissipative theory and feedback control under the framework of dissipation with the supply rate is the inner product of input u and the derivation of output y for the linear/nonlinear time-invariant input affine syste
Externí odkaz:
http://arxiv.org/abs/2306.08459
Autor:
Lu, Yufeng
We establish the sharp conditions for the embedding between Wiener amalgam spaces $W_{p,q}^s$ and some classical spaces, including Sobolev spaces $L^{s,r}$, local Hardy spaces $h_{r}$, Besov spaces $B_{p,q}^s$, which partially improve and extend the
Externí odkaz:
http://arxiv.org/abs/2211.05336
Autor:
Lu, Yufeng
We study the Cauchy problem for the generalized KdV and one-dimensional fourth-order derivative nonlinear Schr\"odinger equations, for which the global well-posedness of solutions with the small rough data in certain scaling limit of modulation space
Externí odkaz:
http://arxiv.org/abs/2211.05329
Publikováno v:
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 137-151 (2024)
In this article, we mainly prove low regularity conservation laws for the Fokas-Lenells equation in Besov spaces with small initial data both on the line and on the circle. We develop a new technique in Fourier analysis and complex analysis to obtain
Externí odkaz:
https://doaj.org/article/3ea388b3e0804e7e9f2d8e88e0bfab03
Autor:
Lu, Yufeng
We show some new local smoothing estimates of the fractional Schr\"odinger equations with initial data in $\alpha$-modulation spaces via decoupling inequalities. Furthermore, our necessary conditions show that the local smoothing estimates are sharp
Externí odkaz:
http://arxiv.org/abs/2208.06596
We consider the Cauchy problem for the (derivative) nonlocal NLS in super-critical function spaces $E^s_\sigma$ for which the norms are defined by $$ \|f\|_{E^s_\sigma} = \|\langle\xi\rangle^\sigma 2^{s|\xi|}\hat{f}(\xi)\|_{L^2}, \ s<0, \ \sigma \in
Externí odkaz:
http://arxiv.org/abs/2207.04485
Autor:
Lu, Yufeng a, b, Xie, Fangfang a, b, ⁎, Ji, Tingwei a, b, Wang, Danxiang a, b, Zhang, Xinshuai a, b, Du, Changping a, b, Zheng, Yao a, b
Publikováno v:
In Aerospace Science and Technology March 2025 158
Autor:
Lu, Yufeng
In a $(1+n)$-dimensional Lorentz--Finsler manifold with $N$-Bakry--\'Emery Ricci curvature bounded below for $N\in(n,\infty]$, using the Riccati equation techniques, we established the Bishop--Gromov volume comparison for the so-called standard sets
Externí odkaz:
http://arxiv.org/abs/2111.10977